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Abstract: Recent studies on Vision-Language-Action (VLA) models have shifted
from the end-to-end action-generation paradigm toward a pipeline involving task
planning followed by action generation, demonstrating improved performance on
various complex, long-horizon manipulation tasks. However, existing approaches
vary significantly in terms of network architectures, planning paradigms, represen-
tations, and training data sources, making it challenging for researchers to identify
the precise sources of performance gains and components to be further improved.
To systematically investigate the impacts of different planning paradigms and rep-
resentations isolating from network architectures and training data, in this paper,
we introduce VLA-OS, a unified VLA architecture series capable of various task
planning paradigms, and design a comprehensive suite of controlled experiments
across diverse object categories (rigid and deformable), visual modalities (2D and
3D), environments (simulation and real-world), and end-effectors (grippers and
dexterous hands). Our results demonstrate that: 1) visually grounded planning
representations are generally better than language planning representations; 2)
the Hierarchical-VLA paradigm generally achieves superior or comparable per-
formance than other paradigms on task performance, pretraining, generalization
ability, scalability, and continual learning ability, albeit at the cost of slower training
and inference speeds. Video results are in https://nus-lins-lab.github.io/vlaos/.
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1 Introduction

Building intelligent and generalizable robots capable of perceiving, reasoning about, and interacting
with physical environments remains a persistent challenge in the robotics community [1, 2]. Recent
studies have increasingly emphasized the development of foundational models for robot manipulation
tasks by training large Vision-Language-Action models (VLAs) on extensive datasets [3, 4, 5,
6, 7, 8, 9, 10]. Different from end-to-end foundation models in computer vision [11, 12, 13]
and natural language processing tasks [14, 15, 16], recent studies of VLAs have shifted toward a
new paradigm capable of performing task planning and policy learning either simultaneously or
sequentially [17, 18, 19, 20, 21, 22, 23, 4]. This shift arises from the inherent complexity of robotic
manipulation tasks, which naturally exhibit hierarchical structures involving both high-level task
planning and low-level physical interactions [24]. Compared to end-to-end VLAs that only generate
actions, these methods demonstrate stronger capabilities in task reasoning and comprehension for
long-horizon tasks [25, 4], better success rates [18, 20], and higher sample efficiency [26, 19, 27].
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Figure 1: Left: four different VLA paradigms. Note that in this paper, we didn’t explore PlanningOnly-
VLA since they usually cannot be trained with the provided datasets and perform worse than others.
Right: VLA paradigm comparison results. Hierarchical-VLA exhibits a generally better performance
than ActionOnly-VLA and Integrated-VLA, while it incurs larger training and inference costs. This
motivates future work on improving training and inference algorithms for Hierarchical-VLA models.

However, current task-planning approaches in VLA are mainly based on intuitive designs and lack
fair and systematic comparisons, as these methods vary along multiple dimensions, including network
architectures, planning paradigms, data representations, and training data sources. For example, some
works [20, 22, 19, 23] use a separate high-level task planning model to generate various task planning
representations for a low-level VLA model, while others [4, 18, 17] use a single VLA to generate
task planning representations and actions together. Consequently, substantial disagreement remains
within the VLA community regarding the appropriate design and effective utilization of task planning.
This makes it difficult for researchers to clearly identify which specific component contributes to
performance gains or requires further improvement, hindering progress in the field.

Among these challenges, five core questions stand out: 1) Representation: What representation
should we adopt for task planning and policy learning? Does using multiple representations yield
better results, or could they conflict with one another? 2) Paradigm: Should we employ a monolithic
model that jointly performs task planning and policy learning, or should we opt for a hierarchical
paradigm where two separate models handle these tasks independently? 3) Bottleneck: Between task
planning and policy learning, which presents a greater challenge for current manipulation tasks? 4)
Scalability and Pretraining: Do VLAs that incorporate task planning preserve the advantageous
properties of end-to-end foundation models, such as model and data scalability, as well as benefits
derived from pretraining? and 5) Performance: Do VLAs employing task planning have better
generalization and continual learning ability than end-to-end VLAs? Addressing these questions will
provide the community with a clearer understanding of how task planning works in VLA models,
and offer empirical evidence and guidance for future developments.

In this work, we aim to answer these questions with systematic and controllable experiments. First,
to avoid biases introduced by specific neural network choices, we develop VLA-OS1 model series:
a unified and composable family of VLA models for general-purpose manipulation tasks capable

1“OS” stands for “Operating System” and designates that our model family provides unified and organized
interfaces of advanced VLA architectures with various planning heads and different paradigms for users.
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of different task planning paradigms. Concretely, we designed VLA-OS-A, VLA-OS-I, and VLA-
OS-H that correspond to three mainstream VLA paradigms (ActionOnly-VLA, Integrated-VLA,
Hierarchical-VLA), respectively, as illustrated in Figure 1. VLA-OS series features a unified,
interchangeable VLM backbone that can be directly downloaded from HuggingFace, various plug-
and-play planning heads for different representations, and two different action heads both supporting
2D/3D tasks, as shown in Figure 2. We show in Table 1 that VLA-OS exhibits superior performance
compared to most existing VLA methods with fewer parameters and without pretraining.

Next, to answer the representation question, we annotate three kinds of task reasoning representa-
tions, including language reasoning, visual reasoning, and goal images, and conducted exhaustive
combinatorial experiments with Integrated-VLA and Hierarchical-VLA models on LIBERO [28]
benchmark to identify representations that yield optimal performance. Subsequently, employing
the optimal representations identified, we conducted performance comparisons among three VLA
paradigms on six benchmarks to answer the paradigm question, including rigid body manipulation
tasks [28], visual generalization tasks [29], complex long-horizon tasks [30], real-world deformable
manipulation tasks, dexterous manipulation tasks [31], and dual-arm manipulation tasks [32]. Fur-
thermore, to answer the bottleneck question, we designed a novel set of evaluation metrics tailored
to separately assess the performance of task planning and policy learning parts. To answer the
scalability question, we use LIBERO [28] to test the model and data scalability as well as the effects
of pretraining among different paradigms. And lastly, we test the generalization capabilities and
continual learning ability of different VLA paradigms to answer the performance question.

Our experiments yield three primary findings: 1) Visually grounded planning representations (visual
reasoning and image foresight planning) outperform language-based planning representations across
multiple dimensions including task performance, generalization, training and speed, and low-level
policy execution; 2) Hierarchical-VLA matches or exceeds the performance of Integrated-VLA and
ActionOnly-VLA in terms of task performance, generalization, scalability, planning scores, continual
learning, and gains from task-planning pretraining, albeit at the expense of increased training cost
and slower inference; 3) On LIBERO [28] benchmark tasks, policy learning is consistently more
challenging than task planning, regardless of which planning representation is used. We believe that
our findings (as well as source codes, annotated datasets, and checkpoints) will provide significant help
and guidance for future research within the VLA community and the broader robotics community.

2 VLA-OS Model Family Design

2.1 Preliminaries

We study imitation learning for robot manipulation tasks. Specifically, for each task T , we assume a
set of demonstrations DT = {(o1i , a1i ), (o2i , a2i ), · · · , (o

Ti
i , aTi

i )}Ni=1 and a language goal are given,
where Ti is the episode length, o is the observation, a is the robot action, and N is the number
of demonstrations. We use a history of multi-view images and proprioception information as
observations. In this work, we set the image resolution as 224 × 224. For actions, we use a
normalized continuous delta end-effector pose δp action space and gripper open/close action σ for
training. We also let the policy generate action chunks, i.e., at = ([δp, σ]

t, · · · , [δp, σ]t+L−1). For
dexterous hands, we use the delta joint values as the action space. We train the policy with either flow
matching [33, 34] loss (for multi-modal demonstration datasets) or L1 loss (for simple and uni-modal
demonstration datasets) under the suggestion of previous works [35, 3, 36, 37].

2.2 VLA-OS-A for ActionOnly-VLA Paradigm

VLA-OS-A model series directly generates actions without task planning stages. It is also used as the
base model for other paradigms. We design a block-wise causal attention VLA drawing inspiration
from [3], as shown in Figure 2. First, a VLM encodes the visual and language inputs, where the vision
encoder will encode input image patches and project them into language embedding space with an
MLP. Then, we use a separate set of weights as an action head for the robotics-specific tokens (action
and proprioception states). The action head is a transformer decoder that has the same number of
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Figure 2: The VLA-OS model family. Left: the VLM and the composable heads. Our VLM has the
same architecture with different numbers of parameters. Although we only draw Qwen2.5 here, our
code supports any kind of LLM backbone from HuggingFace. Right: four VLA-OS architectures
used in our experiments. To minimize the effects of different numbers of parameters in different
models, we restrict the number of parameters of all heads to about 5% of the VLM.

layers as the LLM, and for each layer, the queries of the proprioception tokens can attend to both the
keys and values from the LLM and the proprioception keys and values, and the queries of the action
tokens can attend to the keys and values from the LLM, the proprioception tokens, and themselves.

Compared to π0 [3], we make two changes in VLA-OS-A: 1) we use an ensemble of vision encoders
(DINOV2 [11]+SigLIP [38]), which is proven to be better than using a single vision encoder [39];
2) to support the model scalability experiments, we need a set of LLMs with the same structure but
have different number of parameters. Thus, we choose Qwen2.5 [16] LLM series with 0.5B, 1.5B,
3B, 7B pretrained checkpoints rather than the original PaliGamma [40]. To make it a VLM, we
finetune Qwen2.5 LLMs with the vision encoders and the projector on LLaVa v1.5 [41] data mixture
by ourselves. We call our VLA family that uses 0.5B, 1.5B, 3B, 7B LLM backbones with suffixes
of -S(mall), -B(ase), -M(iddle), and -L(arge). Detailed information can be found in Appendix E.
Note, although we use Qwen2.5 in this work, our codes support any kind of LLM from HuggingFace,
which makes VLA-OS highly flexible compared to [3] that is restricted to a specific backbone.

For 3D action head, we also take in multi-view depth images as input, and fuse the multi-view RGBD
images to 3D point cloud using camera intrinsics and extrinsics, and inject additional CLIP features
onto the point cloud, as in 3D diffuser actor [42]. We also downsample the point cloud with farthest
point sampling. Each point from the downsampled point cloud will be seen as a token and these 3D
tokens are sent to the action head as additional inputs.

2.3 VLA-OS-I for Integrated-VLA Paradigm
To perform task planning with different kinds of representations, we design three kinds of task
planning heads for VLA-OS. We first annotate three kinds of task reasoning datasets corresponding
to each planning representation, as shown in Figure 3. Here we only briefly introduce each of them.
Details of the data annotation process can be found in Appendix D.

The language reasoning data contains 8 different keys [18] for each timestep, including Task, Plan,
Subtask, Subtask Reason, Move, Move Reason, Gripper Position, and Object Bounding Boxes,
containing the understanding of the scene and decomposition of the task. The visual reasoning data
contains spatial semantic information and is more grounded in input images compared to language
reasoning. We follow [43, 44] and use location tokens <loc i> to represent the i-th bin token from top-
left to bottom-right. We use this kind of token to represent object bounding boxes, end-effector
flow, and target object affordance as the visual planning representations. The image foresight
reasoning data is a third-person view image at the K-th future step as the short-horizon goal image.
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Figure 3: The formats and contents of the language reasoning dataset, the visual reasoning dataset,
and the image foresight reasoning dataset in this work. We use various vision-language models for
data annotation. We illustrate the language reasoning data annotation process on the top left part.

We then design language planning head, visual planning head, and image foresight planning head
for each kind of representation, as shown in Figure 2. All of them are transformers that have the
same number of layers with the LLM backbone, and use the block-wise causal attention mechanism
to acquire the keys and values from each layer of the LLM backbone as conditions. The language
planning head uses the LLM’s tokenizer for decoding, whereas the visual planning head uses an
extended tokenizer vocabulary to predict location tokens. The image foresight planning head is
an autoregressive image generation model similar to the recent SOTA image generator [45]. It
auto-regressively generates the image in a coarse-to-fine paradigm proposed by VAR [46]. The
language and visual planning heads are trained with cross-entropy loss, while the image foresight
planning head is trained with the special loss in [45].

For all three planning heads, there are two kinds of ways to use them: 1) implicit planning: the
action head is independent of the planning heads, i.e., the planning heads serve as auxiliary losses
for the VLA training and will not be executed during inference. This may help the model avoid
planning accumulation error and improve the inference speed; 2) explicit planning: the action head
also attends to the keys and values from each layer of the planning heads, and during inference, the
VLA must first perform task planning before generating actions. This may help solve complex tasks
in a chain-of-thought [47, 18, 17] manner.

2.4 VLA-OS-H for Hierarchical-VLA Paradigm

This model uses two networks for task planning and policy learning respectively. As shown in
Figure 2, we use the VLM together with planning heads for task planning, and modify the action
head to an encoder-decoder transformer for policy learning. This action head can take as input the
images, proprioception observations, and the planning representations to generate actions. To keep
the comparison fair, we make the layer of the encoder and decoder of the action head half of the other
two VLA-OS paradigms. We also give frozen image features from AM-Radio [48] and language
features from Qwen2.5 [16] for the inputs of the action head to compensate for deficiencies in visual
and linguistic features not captured by the VLM. Training details are in Appendix E.
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Figure 4: Benchmarks used in our evaluations, including LIBERO [28] and FurnitureBench [30]
for 2D rigid body manipulation experiments, The COLOSSEUM [29] for 3D and generalization
evaluation, real-world deformable object manipulation tasks (fold the handkerchief, unfold the jean,
and straighten the rope), DexArt [31] for dexterous tasks, and PerAct2 [32] for dual-arm tasks.

3 Experiments and Findings

In this section, we perform systematic and controllable experiments with the VLA-OS model series
on various manipulation tasks shown in Figure 4 to answer the research questions in Section 1. The
task planning experiments, training costs, scalability experiments, and continual learning experiments
are in Appendix B. Detailed experimental settings are in Appendix E. All models are trained on
8×NVIDIA A100 80G GPUs.

3.1 Sanity Check of VLA-OS

Before investigating different VLA paradigms for our research questions, we first verify the correct-
ness and basic performance of our VLA-OS models to serve as a foundational sanity check. We train
VLA-OS-A-S on four suites from LIBERO [28] (LIBERO-Spatial, LIBERO-Object, LIBERO-Goal,
LIBERO-Long) from scratch with L1 loss and compare them with Diffusion-Policy [49], fine-tuned
OpenVLA [5], fine-tuned CoT-VLA [17], fine-tuned DiT Policy [50], and the state-of-the-art methods:
fine-tuned π0 [3] and its variant π0-FAST [51]. Results are shown in Table 1.

Table 1: Sanity check. Success rates on four LIBERO benchmarks. Baseline results are from their
papers [5, 3, 35]. Our results are the average of top-3 checkpoints averaged over 20 rollouts for each
task suite. Bold indicates the best result except SOTA, and underline indicates comparable result.

LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average

Diffusion Policy [49] (scratch) 78.3 92.5 68.3 50.5 72.4
OpenVLA [5] (fine-tuned) 84.7 88.4 79.2 53.7 76.5
CoT-VLA [17] (fine-tuned) 87.5 91.6 87.6 69.0 81.1
DiT Policy [50] (fine-tuned) 84.2 96.3 85.4 63.8 82.4
π0-FAST [51] (fine-tuned) 96.4 96.8 88.6 60.2 85.5

VLA-OS-A-S (scratch, ours) 87.0 96.5 92.7 66.0 85.6
π0 [3] (fine-tuned, SOTA) 96.8 98.8 95.8 85.2 94.2

We can see that VLA-OS-A-S performs better (+13.2%) than Diffusion Policy (trained from scratch)
and the fine-tuned OpenVLA model (+9.1%), CoT-VLA (+4.5%), and DiT Policy (+3.2%), and is
comparable to fine-tuned π0-FAST (+0.1%). Although our model is worse than the SOTA method,
these results sufficiently demonstrate that our model design is excellent and competitive. Note that
VLA-OS-A-S is trained from scratch and utilizes only a 0.5B LLM backbone.

Finding 1: For downstream tasks, larger VLA models trained on large-scale datasets do not necessar-
ily outperform smaller models that are trained from scratch. Model architectures and algorithmic
designs are still important at the current moment.

3.2 Planning Representation Experiments

To explore which representation is better for task planning and policy learning, we perform compre-
hensive experiments with language planning (L), visual planning (V), image foresight planning (IF),
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VLA-OS-A VLA-OS-I VLA-OS-H

LIBERO-LONG (2D) 66.0 73.3 (↑ 7.3) 74.2 (↑ 8.2)
The COLOSSEUM (3D) 34.4 35.7 (↑ 1.3) 35.3 (↑ 0.9)
Deformable (Real-World) 28.5 35.4 (↑ 6.9) 33.6 (↑ 5.1)

FurnitureBench 11.0 14.0 (↑ 3.0) 14.0 (↑ 3.0)
DexArt 45.0 49.0 (↑ 4.0) 48.0 (↑ 3.0)
PerAct2 21.0 28.0 (↑ 7.0) 29.0 (↑ 8.0)

Generalization 6.1 6.2 (↑ 0.1) 7.4 (↑ 1.3)

Planning Head Pretraining – 79.1 (↑5.8) 79.8 (↑5.6)

(a) Success rates of different VLA paradigms on more benchmarks, as
well as the generalization and task planning pretraining experiments.
All results are averaged over 20 rollouts among 3 best checkpoints.

(b) Training cost and inference time
for different representations.

Figure 6: More results for different paradigms and inference time and training cost for different
representations. Results of the right figure are calculated from the LIBERO-LONG benchmark.

and their combinations on LIBERO-LONG [28] benchmark that contains 10 long-horizon tasks with
50 demonstrations in each task for VLA-OS-I and VLA-OS-H. The best representation will be used
as the default representation for all later experiments. Table 2 shows the results.

Table 2: Different planning representation comparison on LIBERO-Long. All results are the average
of top-3 checkpoints averaged over 20 rollouts. Numbers in parentheses indicate the change relative
to the result of VLA-OS-A in Table 1.

L V IF L+V L+IF V+IF L+V+IF

VLA-OS-I-I 68.0 (↑2.0) 71.0 (↑5.0) 72.5 (↑6.5) 66.7 (↑0.7) 73.3 (↑7.3) 71.0 (↑5.0) 71.7 (↑5.7)
VLA-OS-I-E 60.5 (↓5.5) 52.5 (↓13.5) 67.5 (↑1.5) 42.7 (↓23.3) 56.7 (↓9.3) 56.7 (↓9.3) 50.7 (↓15.3)
VLA-OS-H 63.5 (↓2.5) 69.0 (↑3.0) 71.7 (↑5.7) 71.5 (↑5.5) 72.0 (↑6.0) 73.7 (↑7.7) 74.2 (↑8.2)

Finding 2: For Integrated-VLA paradigm, implicit planning can yield a positive performance gain,
whereas explicit planning incurs a significant performance degradation when trained from scratch.

Figure 5: Comparison between VLA-
OS-I-E and VLA-OS-H with the same
planning errors. The three planning rep-
resentations shown in this figure all have
small planning errors (highlighted).

For qualitative comparisons, we show in Figure 5 an exam-
ple that when VLA-OS-H uses the same planning heads
as VLA-OS-I-E where there are some planning errors, it
can correct the behavior while VLA-OS-I-E cannot.

Finding 3: Visually grounded planning representations
work better than language planning representations, and
also have faster inference speed and smaller training cost.

From the results in Table 2, we can see that visual planning
and image foresight planning are better than language plan-
ning (↑5.75 v.s. ↑2.0 for VLA-OS-I-I and ↑4.35 v.s. ↓2.5
for VLA-OS-H). We also illustrate the inference speed and
training cost in Figure 6b (introduced in Section B.2) to
show the speed and cost advantages of visually grounded
planning representations.

Finding 4: When employing multiple planning repre-
sentations concurrently, Hierarchical-VLA outperforms
Integrated-VLA paradigms.

3.3 More Performance, Generalization,
and Benefit from Planning Head Pretraining

To further compare different planning paradigms, we perform additional experiments to explore their
performance on: 1) more manipulation benchmarks including 3D manipulation tasks [29], real-world
deformable tasks, furniture assembly tasks [30], dexterous manipulation tasks [31], and dual-arm
manipulation tasks [32]; 2) generalization ability; and 3) benefits from planning head pretraining.
For 1), in COLOSSEUM, we train and test on the No-Perturbation setting. For 2), we use THE
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COLOSSEUM and train on No-Perturbation but test on ALL-Perturbation setting, including changes
in color, texture, size of objects, table-tops, backgrounds, lighting, distractors, physical properties,
and camera poses. For 3), a lot of literature [19, 21, 52, 20, 53, 54] claim that the primary advantage
of using task planning in VLA rather than ActionOnly-VLA is that their task-planning components
can be trained on large-scale task-agnostic planning data without costly action annotations. Here,
we train them on LIBERO-90, a larger dataset with 90 manipulation tasks and 50 demonstrations
for each task. We only train the planning components, i.e., the VLM and planning heads. Then we
fine-tune the pretrained VLM and planning heads together with the action head on LIBERO-LONG
with both the task reasoning and policy learning losses. Results are in Table 6a.

Finding 5: Integrated-VLA and Hierarchical-VLA outperform ActionOnly-VLA across a broad
spectrum of tasks (2D, 3D, simulation, and real-world), with their performances largely comparable.

Finding 6: Both Integrated-VLA and Hierarchical-VLA benefit similarly from task-planning pretrain-
ing, exhibiting analogous gains in task success rate.

Finding 7: Hierarchical-VLA demonstrates the best generalization ability.

4 Conclusion and Limitation

We provide a systematic investigation across different VLA paradigms and task planning represen-
tations through various kinds of manipulation tasks. Experiments show the superiority of visually
grounded planning representations and the Hierarchical-VLA paradigm. The limitations of this paper
are in Appendix F. Our findings can be summarized as follows:

1. The time has not yet come to scale up VLA model sizes.

2. Visually grounded representations (visual and image foresight) are better than language
planning representations in terms of success rates, low-level following, and continual
learning.

3. Integrated-VLA and Hierarchical-VLA outperform ActionOnly-VLA on task performance
and generalization ability, but incur faster forgetting.

4. Integrated-VLA and Hierarchical-VLA perform comparably on task performance and Plan-
ning Head Pretraining, but Hierarchical-VLA generalizes better and has better task-planning
performance.

5. All VLA paradigms have the data scalability. For tasks trained from scratch with roughly
5,000 demonstrations, the LLM backbone should be limited to 0.5B parameters, or keeping
the total model size under 1B parameters.

We believe our findings offer meaningful insights that can inform future research in VLA and the
broader robotics community. We recommend the following research directions for the community
based on our findings:

1. Why are visually grounded representations better than language?

2. How to avoid gradient conflict between planning head losses and action head losses on the
VLM backbone? This is because that in both explicit v.s. implicit and Hierarchical v.s.
Integrated comparisons, reducing the influence of action head training on VLM improves
the performance.

3. How to design network architectures to effectively extract information from VLM? There
could be better mechanism than the current KV extraction method.

4. How to design faster planning heads for autoregressive planning heads?

5. How to design better low-level action heads with better planning-following ability?

6. How to construct large-scale task planning datasets for VLA? How to transfer current
datasets to task planning datasets? This is because that our finding 6 shows that task
planning pretraining is useful.
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A Related Works

A.1 VLA Paradigms for Robot Manipulation

Vision-Language-Action Models (VLAs) refer to multi-modal comprehensive models that can handle
visual and language inputs and generate robot actions for control. The word “VLA" was first proposed
and studied in RT-2 [55], where they train a VLM to output actions as text tokens for robot control.
After that, more VLA works are emerging. According to how they incorporate the task planning
process, we divide VLAs into four paradigms and introduce each of them as follows.

PlanningOnly-VLA These works leverage pretrained LLMs or VLMs to reason and perform task
planning without generating the low-level action. They break up the given task into simpler sub-tasks
that can be performed by either using a set of pre-trained sub-skills [56, 7, 57, 58, 59], or outputting the
parameters of pre-defined motions or cost functions for optimization [60, 61, 62, 63, 64, 65, 66, 67].
The problem is that their VLMs and low-level skills usually cannot be trained with further datasets,
which frequently places them at a disadvantage compared to other VLA paradigms capable of training
on given datasets [68, 69]. Consequently, we do not include PlanningOnly-VLA in this study.

ActionOnly-VLA These works employ an end-to-end fashion to directly map visual and language
inputs to robot actions with a multi-modal network. Pioneering works mainly focus on verifying the
effectiveness of large-scale robot learning [70, 55, 71, 72], while later works start to explore different
model architectures, training objectives, and extra multi-modal representations and information fusion
designs to make this paradigm more effective and efficient [3, 6, 5, 73, 74, 75, 51, 76, 77, 36, 78, 79].
In this work, we design VLA-OS-A for this paradigm by synthesizing several advanced model designs
that have been verified to be superior in recent works [37, 3, 36].

Integrated-VLA These works use a single model to perform task planning and policy learning
simultaneously. According to whether the action generation process is conditioned on the planning
embeddings or results, they can be further divided into explicit planning and implicit planning. For
explicit planning, EmbodiedCoT [18] and CotVLA [17] generate either language-based or goal-image-
based embodied chain-of-thought [47] reasoning before generating actions, and the action generation
process is conditioned on the embeddings of CoT. For implicit planning, MDT [80] and PIDM [23]
use goal image foresight generation loss as an auxiliary objective for planning, while RoboBrain [26]
and ChatVLA [25] train VLA with auxiliary task reasoning loss in language representations. Some
recent works also seek to use latent action tokens [81, 82, 52, 83, 84] that serve as forward dynamics
representations to generate future images as image foresight planning, and decode these latent actions
to real actions with another action head. The inputs to the action head are from the VLM encoder,
and they do not need the planning heads (decoder) during inference [81, 82, 52, 83] or they only need
one planning forward pass [84], so we also see these methods as implicit planning. In this work, we
design VLA-OS-I for this paradigm with various plug-and-play planning heads upon VLA-OS-A for
different planning representations, and design corresponding variants for both explicit and implicit
planning paradigms as VLA-OS-I-I and VLA-OS-I-E.

Hierarchical-VLA These works use two separate models for task planning and policy learning,
with no connection or gradient between them. The idea of hierarchical models has always existed
in robotics research [66, 67, 27, 85, 86]. RT-H [22] is the first work of this paradigm, where they
use two identical VLMs to generate languages and actions respectively. Later works [20, 87, 4] also
follow this idea but use different model architectures for task planning and action generation. Other
works seek to generate multi-modal planning results for policy learning, such as image flows or
trajectories [88, 19, 21], future videos [89, 54], affordance [90, 91], keypose [92], and keypoints [53].
In this work, we design VLA-OS-H for this paradigm.

A.2 VLA Benchmarks and Evaluations

With the rapid advancement of VLA models, benchmarks and evaluation studies for VLA have also
experienced significant growth. Given the complexity and multi-dimentionality of robot manipulation
tasks and VLA models, different works usually focus on evaluating one or several specific dimensions
of VLA. Some works focus on the VLA model designs and training algorithms, such as different
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model architectures and input and output spaces [37, 93]. Other works aim to build benchmark
environments and tasks to evaluate different capacities of current VLA models, such as spatial and
visual generalization ability [68], long-horizon task reasoning ability [69], and different training data
modalities [25]. In this work, we focus on task planning paradigms for VLA and keep the model
architectures the same with systematically designed controllable experiments.
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B More Experiments

B.1 Separate Investigation of Task Planning and Policy Learning Parts

Table 3: Separate evaluation of task planning and
policy learning modules for different paradigms
and representations. Results are averaged from 20
episodes for each task in LIBERO-LONG.

L V IF

DCS IFS DCS IFS DCS IFS

VLA-OS-I-I 0.79 – 0.83 – 0.92 –
VLA-OS-H 0.81 0.84 0.86 0.93 0.94 0.90

It is imperative to discern whether task fail-
ures arise from the planning component or pol-
icy learning. In this part, we use LIBERO-
LONG [28] for Integrated-VLA (only for task
planning) and Hierarchical-VLA to separately
evaluate the task planning part and policy learn-
ing part of the model for all three planning repre-
sentations. For evaluation, we manually divide
each long-horizon task into several sub-tasks,
and forcibly reset the environment to the initial state of each subtask. Then we compute the average
planning correctness I (0 or 1) of the planning outcomes and execution success rate S (0 or 1) from the
action head across all subtask start points. Thus, for a given task trajectory, we can get Decomposition
Score (DCS)= 1

T

∑T
t=1 I(pt) and Instruction Following Score (IFS)= 1

T

∑T
t=1 S(a

seq
t ), where

T is the total sub-task number and pt and aseqt are the planning outcomes and actions generated at
subtask t. Note for Hierarchical-VLA, we give the ground truth planning results when testing IFS.
Results are shown in Table 3.

Finding 8: Hierarchical-VLA performs better than Integrated-VLA in task planning.

Finding 9: Visually grounded planning representations are easier for low-level policy to follow.

B.2 Training Cost and Inference Speed
We report the inference speed and training cost for different paradigms and planning representations.
The training cost is calculated by multiplying the total training steps by the per-step time on LIBERO-
LONG with 8× A100 NVIDIA GPUs. Results are shown in Figure 1 and 6b.

Finding 10: The autoregressive property of the language-planning representation head is the principal
cause of its higher training cost and slower inference speeds.

B.3 Data and Model Scalability Experiments

In this part, we perform experiments for data and model scalability of different VLA paradigms.
For data scalability, we use LIBERO-LONG [28], a dataset with 10 tasks with a total of 500
demonstrations. We use 10%, 40%, 70%, and 100% of the data to train on three VLA paradigms
with the model size S. For model scalability, we use LIBERO-90, a dataset with 90 tasks and 4,500
demonstrations, for the experiment with all training data. We choose Qwen-2.5 LLM backbone with
parameters of 0.5B, 1.5B, 3B, and 7B for experiments. Results are shown in Figure 7.

Finding 11: The performance of all VLA paradigms improves as the amount of action-labeled
demonstration data increases, i.e., all VLA paradigms have the data scalability.

Finding 12: For tasks trained from scratch with roughly 5,000 demonstrations, the LLM backbone
should be limited to 0.5B parameters, or keeping the total model size under 1B parameters.

B.4 Continual Learning Experiments of Different VLA Paradigms

Continual learning for robot imitation learning [28, 94] measures the degree to which the VLA model
forgets old tasks when continuously learning new tasks. In this part, we test the continual learning
capacities of three paradigms and three representations on 10 tasks of LIBERO-LONG sequentially.
We only use Sequential Finetuning (SEQL) as our lifelong learning algorithm. We use the original
metrics from LIBERO [28], including forward transfer (FWT), negative backward transfer (NBT),
and area under the success rate curve (AUC). Denote ci,j,e as the agent’s success rate on task j when
it learned over i− 1 previous tasks and has just learned e epochs (e ∈ 0, 2, · · · , 20) on task i. Let
ci,i be the best success rate over all evaluated epochs e for the current task i (i.e., ci,i = maxe ci,i,e).
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(a) Data scalability experiments on LIBERO-LONG
with different planning paradigms with 0.5B LLM back-
bone. Success rates are calculated among 20 evaluation
episodes among the 3 best checkpoints.

(b) Model scalability experiments on LIBERO-90 of all
VLA paradigms. Success rates are calculated among
20 evaluation episodes among the 3 best checkpoints.
We select the best checkpoint before 100k steps.

Figure 7: Data and model scalability experiments across different VLA paradigms.

Then, we find the earliest epoch e∗i in which the agent achieves the best performance on task i (i.e.,
e∗i = argmine ci,i,ei = ci, i), and assume for all e ≥ e∗i , ci,i,e = ci, i. Given a different task j ̸= i,
we define ci,j = ci, j, e∗i . Then the three metrics are defined as follows:

FWT =
∑

k∈[K]

FWTk

K
, FWTk =

1

11

∑
e∈{0...50}

ck,k,e,

NBT =
∑

k∈[K]

NBTk

K
, NBTk =

1

K − k

K∑
τ=k+1

(ck,k − cτ,k) ,

AUC =
∑

k∈[K]

AUCk

K
, AUCk =

1

K − k + 1

(
FWTk +

K∑
τ=k+1

cτ,k

)
.

(1)

Results are shown in Table 4 and Table 5.

Table 4: Continual learning results on LIBERO-
LONG of three different VLA paradigms. The
VLA-OS-I and VLA-OS-H are trained with three
planning representations together.

FWT(↑) NBT(↓) AUC(↑)

VLA-OS-A 0.71 0.32 0.25
VLA-OS-I 0.75 0.43 0.29
VLA-OS-H 0.80 0.45 0.32

Table 5: Continual learning results on LIBERO-
LONG of three different planning representa-
tions (Language (L), Visual (V), and Image Fore-
sight (IF)) on VLA-OS-I.

FWT(↑) NBT(↓) AUC(↑)

L 0.72 0.47 0.26
V 0.74 0.40 0.28
IF 0.75 0.39 0.27

Finding 13: VLA paradigms with task planning (Integrated-VLA and Hierarchical-VLA), compared
to the non-planning paradigm (ActionOnly-VLA), achieve higher forward transfer but incur faster
forgetting.

Finding 14: Visually grounded planning representations deliver superior forward transfer and exhibit
slower forgetting relative to language-based planning representations.
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C Benchmarks and Dataset Details

C.1 VLM Pretraining Dataset

The LLM backbones we choose are Qwen-2.5 [16] series. Since they are not VLM, we first pretrain
it to VLM with LLaVa v1.5 [41] data mixture, which consists of two subsets used for a multi-stage
training pipeline. The first subset consists of a 558K sample mixture of examples sourced from
various captioning datasets, while the second consists of 665K multimodal instruct tuning examples
comprised of synthetic data generated in [41], as well as examples from existing vision-language
training sets. According to the conclusion from Prismatic-VLMs [39], we only use the first subset to
train the VLM in a single-stage optimization procedure, that is, directly fine-tuning all parameters.
We implement the training code with PyTorch using Fully Sharded Data Parallel (FSDP [95]) and
BF16 mixed precision and train the VLM with 2 epochs for all Qwen2.5 model types (0.5B, 1.5B,
3B, and 7B). The training hyperparameters are shown in Table 6.

Table 6: Training hyperparameters of VLM for Qwen2.5 LLM.
Hyperparameter Value

Batch Size 64
Max Gradient Norm 1.0

Weight Decay 0.1
Learning Rate 2e-5

Optimizer AdamW
Scheduler Warmup & Cosine Decay

Warmup Ratio 0.03

C.2 LIBERO Dataset

The LIBERO Dataset [28] contains five subsets: LIBERO-Spatial, LIBERO-Object, LIBERO-GOAL,
LIBERO-LONG, and LIBERO-90. The first four subsets contain 10 tasks for each of them, with 50
demonstrations for each task. The last subset contains 90 tasks with also 50 demonstrations for each
task. All tasks have a language instruction that describes the task. We use the two camera views for
all subsets (the agentview and eye-in-hand view). We use a resolution of 224× 224 for each view of
the image. The action space is 7-dim, containing 6-dim δx, δy, δz, δroll, δpitch, δyaw and 1-dim
gripper open/close. We use a history length of 2 and a future action length of 8.

Following OpenVLA [5], we further clean up the original LIBERO datasets by:

• We filter out all “no-op” actions from the dataset, i.e., actions that have near-zero magnitude
in the translation and rotation components and do not change the state of the robot’s gripper.

• We replay all demonstrations in the corresponding simulation environments and filter out the
demonstrations that fail to complete the task (as determined by the environments’ success
criteria).

C.3 The COLOSSEUM Dataset

For 3D manipulation tasks and generalization experiments, we use The Colosseum [29] as our task
benchmark. This benchmark contains 20 single-arm manipulation tasks in simulation. Each task has
various variants such as lighting, distractors, physical properties perturbations, and camera pose. The
cameras in this benchmark are depth cameras, so we can get the depth map and then get the point
cloud observations by fusing all cameras. We follow 3D-DA [42] to preprocess the 3d observations
to point cloud tokens. Then we send the point cloud tokens to the action head (or the low-level action
head) as additional inputs, together with the original multi-view images. This makes the action heads
have the 3D-aware property. For each task, we have 100 demonstrations. The action space is 8-dim,
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containing 3-dim δx, δy, δz and 4-dim δw, δqx, δqy, δqz as the delta quaternion for rotation, and
1-dim gripper open/close. We use a history length of 2 and action length of 8.

C.4 The Real-World Deformable Manipulation Dataset

For deformable object manipulation tasks, we design three real-world deformable object manipulation
tasks: unfold the jeans, fold the handkerchief, and straighten the rope, as shown in Figure 4. We use
two camera views for these tasks, where a third-view camera is mounted on another X-Arm, and
an eye-in-hand-view camera is mounted on the main X-Arm, as shown in Figure 8. We collect 100
demonstrations for each task with human teleoperation. The cameras we use are RealSense D435i.
We freeze the rotation of the X-Arm, so the action space is 4-dim: 3-dim δx, δy, δz and 1-dim gripper
open/close. The average horizon of these tasks is 214 steps. We also use an observation history length
of 2 and a future action length of 8.

(a) The jeans unfold task. (b) The handkerchief folding task. (c) The rope straightening task.

Figure 8: The real-world deformable object manipulation tasks.

C.5 The DexArt Dataset

We use the DexArt [31] benchmark for dexterous manipulation tasks. This benchmark contains four
dexterous manipulation tasks built on the Sapien [96] simulator, including turn on the faucet, open
the laptop, lift the bucket, and open the toilet. The original benchmark is a reinforcement learning
benchmark, and they provide the official trained policy checkpoint. We load these checkpoints and
collect 100 demonstrations for each task. We use one camera view for each task.

C.6 The FurnitureBench Dataset

For long-horizon complex manipulation tasks, we choose FurnitureBench [30] as our task bench-
mark. This benchmark provides corresponding simulation environments called FurnitureSim, and it
provides demonstrations for four tasks: cabinet, lamp, one-leg, and round-table. Each task has 100
demonstrations. The action space is 8-dim, containing 3-dim δx, δy, δz and 4-dim δw, δqx, δqy, δqz
as the delta quaternion for rotation, and 1-dim gripper open/close. We use three camera views as
input.

C.7 The PerAct2 Dataset

For dual-arm manipulation tasks, we choose PerAct2 [32] as our task benchmark. We use five
tasks in this benchmark: handover item, lift ball, put bottle in fridge, straighten rope, and sweep to
dustpan. As in The Colosseum, we make this benchmark a 3D task benchmark. Each task has 100
demonstrations. The action space is 22-dim, where 16-dim is for the dexterous hand joint values and
6-dim is for the end-effector. For this dataset, we do not use the image foresight planning.

C.8 The Real-World Rigid-Body Manipulation Dataset

To further verify our conclusions in the real-world setting, we design 5 manipulation tasks in a
single-arm manipulation setting, as shown in Figure 9. We collect 50 demonstrations for each task.
The action space is 7-dim.
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Figure 9: Real world manipulation tasks.
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D Reasoning Dataset Annotation

D.1 Language Reasoning Dataset

This dataset contains language-based planning results for the task that understands the scene and
decomposes the task, as used in [20, 69, 25, 22]. We design a unified language planning format and
structure applicable to all manipulation tasks with 8 different keys, including Task, Plan, Subtask,
Subtask Reason, Move, Move Reason, Gripper Position, and Object Bounding Boxes. For exam-
ple, for the task open the top drawer of the cabinet, the reasoning data should be:

TASK: Open the top drawer of the cabinet. PLAN: 1. Approach the
cabinet. 2. Locate the top drawer. 3. Locate and grasp the drawer
handle. 4. Open the drawer. 5. Stop. VISIBLE OBJECTS: akita black bowl
[100, 129, 133, 155], plate [17, 131, 56, 158], wooden cabinet [164,

75, 224, 175] SUBTASK REASONING: The top drawer has been located; the
robot now needs to position itself to grasp the handle. SUBTASK:
Locate and grasp the drawer handle. MOVE REASONING: Moving left aligns
the robot ’s end effector with the drawer handle. MOVE: move left

GRIPPER POSITION: [167, 102, 166, 102, 165, 102, 164, 102, 162, 102,
161, 102, 160, 102, 158, 102, 156, 102, 154, 102, 153, 102, 151, 102,
149, 102, 147, 102, 145, 102, 143, 102]

Similarly to EmbodiedCoT [18], we provide an overview of our data labeling pipeline in Figure 3. To
obtain a comprehensive understanding of the scene, we first query the Prismatic-7B VLM [39], which
outputs a detailed scene description. Next, we derive low-level motion primitives by analyzing the
robot’s proprioceptive state across a 10-step prediction horizon, assuming a static camera viewpoint,
and translating these movement traces into a set of pre-defined action templates (e.g., “move left”,
“move up”). To construct the full reasoning trace, we use Gemini1.5 [97] to synthesize higher-level
plans. Given the task instruction, scene description, and step-wise movements, Gemini1.5 generates a
structured plan that includes a sequence of sub-tasks, as well as the specific sub-task relevant to each
step. Additionally, it provides concise justifications for both the movement taken and the associated
sub-task.

However, during experiments, we observed that the quality of the generated reasoning, referred to
as initial reasoning in Figure 3, was often suboptimal, exhibiting two major issues. First, there was
inconsistency in the planning outputs: even for the same task, the language descriptions of sub-tasks
varied significantly. This stems primarily from the inherent randomness in responses from large
language models such as Gemini1.5. Second, we found a mismatch between the generated plans and
the actual trajectories. This issue was particularly pronounced in complex, long-horizon tasks (e.g.,
FurnitureBench [30]), where the provided inputs—task instruction, scene description, and step-wise
movement primitives—were insufficient for the model to infer coherent and accurate planning steps.
As a result, the low quality of the initial reasoning posed challenges for training the planning head, as
the model struggled to learn meaningful mappings from observations to such plannings.

To address these issues, we applied a filtering and refinement process to the initial reasoning.
Specifically, for each task, Gemini or human experts selected and edited the task descriptions and
high-level plans produced by Gemini to ensure consistency across episodes of the same task. Once
a canonical task and plan were established, we prompted Gemini again to regenerate the step-wise
reasoning under this fixed structure. This process yielded the final reasoning in Figure 3, which aligns
better with the trajectories and provides more coherent supervision for training the planning head.

In addition to the reasoning generated by Gemini, we also incorporate object bounding boxes and
gripper positions into the final annotations. For real-world data, we adopt a labeling strategy similar
to EmbodiedCoT [18], leveraging vision-language models to annotate object locations from visual
inputs. For simulation data, we exploit the availability of camera intrinsics and extrinsics to project
3D gripper positions into 2D image coordinates. Object bounding boxes can also be directly extracted
using simulator-provided segmentation masks, enabling efficient and accurate annotation of the visual
scene.
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Finally, we represent language planning in the following format:

• Task: A concise natural language description of the goal the robot needs to achieve.

• Plan: A high-level sequence of steps to accomplish the task, typically numbered and
described in imperative language.

• Subtask: A mid-level action derived from the plan, typically one step at a time, to be
executed next.

• Subtask Reason: A rationale explaining why the current subtask is necessary or meaningful
in context.

• Move: A specific low-level movement command to guide the robot toward completing the
subtask.

• Move Reason: A justification of the chosen movement, often grounded in spatial alignment
or task constraints.

• Gripper Position: A list of 2D coordinates that define the intended trajectory or position of
the robot’s gripper in image space. This often reflects the gripper’s pixel-level alignment
with the target object.

• Object Bounding Boxes: A list of objects currently detected in the scene, each annotated
with a bounding box in pixel coordinates [x1, y1, x2, y2]

D.2 Visual Reasoning Dataset

This dataset will generate visual representations in the language format for task planning. Compared
to pure language-based representations, these visual representations have better spatial semantic
information and are more grounded in the input images, which are used in recent multi-modal learning
works [43, 44]. In this work, we use three keys, including object bounding boxes, end-effector
flow, and target object affordance as the visual planning representations.

As shown in Figure 3, we use discrete location tokens on the input image to represent visual planning
results. For an image with width W and height H , we evenly divide both the width and height into P
segments each, thus we use P × P discrete bins to represent the visual pictures and each bin consists
of (W/P )× (H/P ) pixels. We use a new location token <loc i> to represent the i-th bin token from
top-left to bottom-right, and increase the tokenizer’s word vocabulary to add these bin tokens. For
bounding boxes, we use the top-left and bottom-right bins to represent them. For end-effector flows,
we use a sequence of bins to represent them. For affordances, we use a region of bins to represent the
target regions. In this work, W = H = 224, and P = 32, i.e., each bin consists of 7× 7 pixels. For
example, for the task Put the cream cheese box and the butter in the basket, the visual reasoning data
should be:

VISUAL OBJECT BBOXES: alphabet soup <loc_500 , loc_632 >, cream cheese <
loc_353 , loc_452], tomato sauce <loc_461 , loc_624 >, ketchup <loc_341 ,
loc_503 >, orange juice <loc_538 , loc_767 >, milk <loc_563 , loc_791 >,
butter <loc_684 , loc_783 >, basket <loc_448 , loc_775 >. VISUAL EE FLOW:
loc_387 , loc_387 , loc_387 , loc_419 , loc_419 , loc_419 , loc_419 , loc_419
, loc_419 , loc_419 , loc_419 , loc_451 , loc_451 , loc_451 , loc_451 ,
loc_451 >. VISUAL AFFORDANCE: loc_354 , loc_355 , loc_356 , loc_386 ,
loc_387 , loc_388 , loc_418 , loc_419 , loc_420 >

Specifically, given a manipulation task T consisting of N steps (i.e.1, 2, ..., N), we take the following
steps to generate visual-based planning representations {Vbox

i ,Vflow
i ,Vafford

i }Ni=1:

1. Object Bounding Boxes: We first get instance semantic maps S = {Si}Ni=1 ∈ RN×H×W

from the simulation engine to compute binary masks for each object in each frame. Next, we
sequentially apply cv2.morphologyEx() to reduce noise and reconnect fragmented regions,
cv2.findContours() to detect object contours, and cv2.boundingRect() to compute the
rectangular bounding box for each detected object. Finally, we annotate the location token of
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the top-left and bottom-right bins for each bounding box. The final bounding box visual an-
notation for task T can be formulated as

{
Vbox
i

}N
i=1

, where Vbox
i =

{
(loctlj , loc

br
j )
}mi

j=1
.

2. End-effector Flow: The end-effector flow visual annotation is obtained by directly labeling
the location tokens corresponding to the gripper positions in the language-based planning
representation. Formally, the end-effector flow annotation for task T can be formulated as{
Vflow
i

}N

i=1
, where Vflow

i = locgripperi .

3. Object Affordance: The object affordance is represented as a heatmap centered on the
target object to be fetched. We first identify the target object by detecting changes in
all bounding boxes (e.g. shifts in location or variations in size). Next, we employ the
pretrained SAM2 [98] model to infer a precise object mask within the target bounding
box. Finally, we compute a Gaussian heatmap centered at the gripper position within
the object mask to model the affordance. Location tokens corresponding to regions with
affordance values exceeding a predefined threshold are then annotated in a top-left to
bottom-right order. The final object affordance annotation for task T can be formulated as{
Vafford
i

}N

i=1
, where Vafford

i = {locj}ni
j=1.

D.3 Image Foresight Reasoning

Image Foresight (IF) reasoning dataset will imagine a future goal frame as the most general represen-
tation for task planning. There is no special effort here to label the goal image. We just select the
future image from the trajectory.

Here we want to introduce more about the image generation head. In this work, we use an image
generation head for planning based on [45]. It auto-regressively generates the image in a coarse-to-
fine paradigm proposed by [46]. Given an input image, it iteratively quantizes the residual image
following a coarse-to-fine resolution schedule {(hk, wk)}Kk=1. It also applies a technique called
Bitwise Self-Correction (BSC) to mitigate the performance gap between training and testing caused
by teacher-forcing training.

Formally, inside each quantization iteration k, the tokenizer does the following steps:

1. Calculate and Quantize Residual: It computes the difference between the original raw
feature F and the reconstructed flipped feature from the previous iteration (F flip

k−1). This
residual is then interpolated to the current resolution (hk, wk) and quantized following [99]
to produce tokens at the current resolution Rk = quantize(down(F − F flip

k−1, (hk, wk))).

2. Apply Random Flipping For BSC: A random flipping operation (Random_Flip(·)) is
applied to the quantized residual Rk based on a probability p. This results in the flipped
residual Rflip

k = Random_Flip(Rk, p).

3. Reconstruct Flipped Feature: The algorithm reconstructs the cumulative flipped feature
F flip

k up to the current iteration. It does this by interpolating all previously generated flipped
residuals (Rflip

i for i from 1 to k) to the original image resolution (h,w) and sums them
together: F flip

k =
∑k

i=1 up(R
flip
i , (h,w)).

During inference, generation starts from a global conditioning signal, for example, the text embedding
in a T2I generation setting. Notably, it generates all tokens of a resolution at once, distinguishing this
method from the raster-scanning generation paradigm.

We select [45] as our image generation head based on three primary advantages. Firstly, it surpasses
the state-of-the-art diffusion-based models [100, 101, 102] in performance on academic benchmarks
and in human preference evaluations. Secondly, [45] achieves lower inference latency compared
to prevalent diffusion models, a critical requirement for embodied planning within the hierarchical
VLA framework. Third, our experiments indicate that the training loss of [45] serves as a stronger
predictor of the final quality of foresight image generation while necessitating fewer hyperparameter
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adjustments, such as the noise scheduling required by the diffusion models. In practice, when the
loss drops below 0.1, it indicates that the training is complete.
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E VLA-OS Model Details

E.1 Action Head Details

The action head for all VLA-OS models is in the same architecture, with only different numbers of
layers. It is a block-wise causal attention transformer with the same number of layers as the LLM
backbone, as introduced in Section 2.2. Let [KV1, · · · ,KVn] be the KV tokens from the LLM, [t] be
the denoising timestep embedding token, [q] be the proprioceptive token, and [at, · · · , at+H−1] be
the action token, sequentially. The tokens in each block can attend to itself and blocks before it, but
cannot attend to blocks after it. The hyperparameters of the action head are shown in Table 7.

Table 7: Hyperparameter of the action head transformer.
Layer Number Hidden Size Dropout Head Non-Linear Func

Action Head S 24 512 0.1 8 GELU
Action Head S 28 512 0.1 8 GELU
Action Head S 36 512 0.1 8 GELU
Action Head S 28 512 0.1 8 GELU

The low-level action head used for VLA-OS-H is also a transformer. It has a separate convolutional
neural network (CNN) for encoding the input images, the visual planning images, and the image
foresight image. For other parts, it keeps the same setting as the normal action head.

E.2 Planning Head Details

All three planning head transformers share the same network structure (the VAE encoder and decoder
of the image foresight planning head are frozen). The planning head takes as input the keys and
values from each layer of the LLM backbone. The hyperparameters of the planning head are shown
in Table 8.

Table 8: Hyperparameter of the planning head transformer.
Layer Number Hidden Size Dropout Head Non-Linear Func

Action Head S 24 512 0.1 8 GELU
Action Head S 28 512 0.1 8 GELU
Action Head S 36 512 0.1 8 GELU
Action Head S 28 512 0.1 8 GELU

E.3 Training Loss Details

The action heads can be trained with either L1 behavior cloning loss, or the flow matching loss. L1
loss is shown to be better than L2 MSE loss for VLA [5, 35]. The L1 loss is:

LL1(θ) = Es,a∈D
∣∣πθ(s)− a

∣∣. (2)

The flow matching loss is:

LFM = Eϵ∼N (0,I),t∼U(0,1),s,a∼D||πθ(xt, t|s)− ut||22, (3)

where xt = (1− t)ϵ+ ta and ut =
d
dtxt = a− ϵ.

The planning head losses for the language planning head and the visual planning head are the standard
next-token prediction loss. The loss for the image foresight planning head follows the original
paper [45].
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E.4 Training Details of Hierarchical-VLAs

The training process of Hierarchical-VLAs can have multiple choices, since they inherently incor-
porate two models that are not connected by backward gradients. In this work, we aim to reuse
the trained model to the greatest extent possible to reduce the cost of repeated training. Thus, for
Hierarchical-VLAs, we first borrow the trained VLMs backbone as well as the planning heads from
Integrated-VLAs, and finetune them on the planning datasets to get the high-level models for the
Hierarchical-VLAs. Later, for the low-level model, we extract the Keys and Values from the high-
level LLM backbone and use them as the embedding of the input visual and language signals and send
them to each layer of the low-level action head. For the planning outputs from the high-level planning
heads, we use different models to encode them: we use a frozen Qwen-2.5 7B [16] model to encode
the language planning outputs to get the sentence embeddings, a common Convolutional Neural
Network (with 6-channel inputs of the current 3-channel image and a 3-channel visual planning
results) to encode the visual planning outputs, and a common Convolutional Neural Network (with
3-channel inputs of the goal image) to encode the image foresight planning outputs. The gradient of
the low-level action head will not go backward through the high-level VLM backbone.
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F Limitations

The limitations of this paper are: 1) despite the VLA-OS family encompassing a wide array of task
planning paradigms for VLA, there remain several designs and variants that we have not yet covered,
such as using latent actions [81, 52] for image generation rather than VAR [46, 45]-like generator in
VLA-OS, video generation for planning [54, 89], and scene flow for planning [19, 103]; 2) we didn’t
explore embodiment transfer, sim2real transfer, and 2D to 3D transfer problems for VLA; 3) our
training dataset remains limited to fewer than 10,000 trajectories, and we have not yet investigated
the research questions that arise from pretraining on larger datasets such as the OXE [104] dataset.
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