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Abstract: Most robot manipulation focuses on changing the kinematic state
of objects: picking, placing, opening, or rotating them. However, a wide
range of real-world manipulation tasks involve a different class of object state
change—such as mashing, spreading, or slicing—where the object’s physical
and visual state evolve progressively without necessarily changing its position.
We present SPARTA, the first unified framework for the family of object state
change manipulation tasks. Our key insight is that these tasks share a com-
mon structural pattern: they involve spatially-progressing, object-centric changes
that can be represented as regions transitioning from an actionable to a trans-
formed state. Building on this insight, SPARTA integrates spatially progress-
ing object change segmentation maps, a visual skill to perceive actionable vs.
transformed regions for specific object state change tasks, to generate a) struc-
tured policy observations that strip away appearance variability, and b) dense re-
wards that capture incremental progress over time. These are leveraged in two
SPARTA policy variants: reinforcement learning for fine-grained control without
demonstrations or simulation; and greedy control for fast, lightweight deploy-
ment. We validate SPARTA on a real robot for three challenging tasks across 10
diverse real-world objects, achieving significant improvements in training time
and accuracy over sparse rewards and visual goal-conditioned baselines. Our
results highlight progress-aware visual representations as a versatile foundation
for the broader family of object state manipulation tasks. More information at
https://vision.cs.utexas.edu/projects/sparta-robot

1 Introduction

The dominant paradigm in robotic manipulation centers on tasks involving rigid body motion—
such as picking-and-placing [1], opening and closing [2, 3], pushing [4], or rotating [5] objects.
While these tasks are foundational, they largely entail changing the kinematic state of objects where
progress on the task is readily visible and easily monitored via changes in object pose. However,
many real-world scenarios involve a fundamentally different class of manipulations: object state
changes (OSC) ' [6, 7, 10]—where an object’s physical state and visual appearance is progressively
transformed, without necessarily altering its pose (see Fig. 1, top). Everyday examples abound:
mashing a banana into purée, spreading jam on bread, or slicing a cucumber. These tasks de-
mand continuous interaction that alters the object’s shape, texture, and color, making them both
mechanically challenging and visually complex. Such state changes are ubiquitous in everyday ac-
tivities—from cooking (e.g., grating, peeling, shredding) to household chores (e.g., painting, wiping,
ironing)—yet remain largely underexplored in robotics.

What makes OSC manipulation challenging for robotics? Unlike motion-centric tasks, OSC requires
continuous reasoning about where transformations have already occurred within a possibly non-rigid

"Here we adopt the term “object state change” (OSC) from the vision literature [6-8]: an OSC is a trans-
formation of an object that entails a visually distinct post-condition (e.g., chopped apple) following an action
imposed on it (e.g., chopping), often with irreversible changes to the object’s morphology, texture, and appear-
ance. Not to be confused with Operational Space Control [9].
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object, where they are still needed, and how to act accordingly. Two key obstacles arise. First, at
the representation level, raw RGB observations entangle appearance with object state, obscuring
the signals of progress and hindering generalization across objects. Second, at the learning level,
obtaining a good reward function is challenging: sparse success rewards provide little guidance for
exploration [11], while goal-conditioned reward functions (e.g. LIV [12]) often rely on global scene-
level embeddings that miss the fine-grained, incremental progress essential for OSC. Together, these
limitations make current approaches sample-inefficient and ill-suited to tasks where state changes
unfold dynamically within the object.

To tackle these challenges, we propose P -
SPARTA (Spatial Progress-Aware Robotic ob- .% A 'i>
ject TransformAtion)—a robotic system that in- | r o

troduces structured, progress-aware visual af-
fordances tailored to OSC manipulation (see
Fig. 1, bottom). @ SPARTA builds on re-
cent computer vision advances in detect-
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(SPOC [8]), integrating them into a fully au- .

tonomous robotic system. SPOC segments a
transforming object into two regions: action-
able and transformed. For instance, in mash-
ing a potato, unmashed chunks are action-
able, while mashed portions are transformed.
SPARTA leverages SPOC affordance’ maps
in two crucial ways: (1) as structured visual
observations that strip away appearance detail &5
while preserving progress cues, enabling gener- P ! L
alization across objects; and (2) as dense, spa- ‘

tially grounded reward signals that quantify in- -
cremental progress at each step. By explicitly — v 'Tmnsforme d BN Background
representing “what has changed” and “what re-

mains,” SPARTA equips robots to reason about Figure 1: Top: ‘While most robotic manipulation fo-

state progression rather than mere object kine-  €uses on rigid-body motion, many real-world tasks. in-
matics volve object state changes such as mashing, spreading,

or slicing, where objects are progressively transformed.
Our formulation enables two policy variants Bottom: SPARTA le_verages spatially—progressing af-
within the same framework. In SPARTA-L, we fordance maps of acnm.mble vs. trar'zsformed regions,
) ) successfully demonstrating how to guide real robot ma-
use SPOC-derived rewards to train real-world nipulation for this family of tasks.
RL agents from scratch—without demonstra-
tions or simulation—achieving highly sample-efficient learning. In parallel, SPARTA-G offers a
non-parametric alternative, greedily steering toward nearby actionable regions in the SPOC map.
Hence, this unified framework supports both (1) reinforcement learning, for robust, fine-grained
control in settings where noise and uncertainty demand adaptive strategies; and (2) greedy control,
for fast, lightweight deployment in simpler settings without training. Together, SPARTA’s two pol-
icy variants demonstrate the versatility of its progress-aware affordances: a single representation can
power both quick heuristic controllers and data-driven RL agents, depending on task complexity.

In our experiments, we show that with just 1.5-3 hours of online RL training directly in the real
world and no human demonstrations, SPARTA learns policies that reliably induce object state
change. We evaluate across three representative OSC tasks—spreading, mashing, and slicing—on
10 diverse real-world objects, demonstrating both robustness and generality. By contrast, base-
line methods fail to learn meaningful behavior, highlighting that dense, interpretable affordances
for object state change are key to enabling sample-efficient, generalizable real-world robot learn-
ing—charting a path beyond rigid-body manipulation.

Here “affordance” means regions requiring robot interaction, distinct from conventional grasp points.



2 Related Work

Non-rigid object manipulation. Recent advances tackle individual tasks requiring more complex
manipulation than traditional pick-and-place-style tasks, such as cutting [13-16], peeling [17-19],
and stir-frying [20]. However, these efforts tackle each task in isolation, often focus on the task’s
mechanical aspects, lack general-purpose vision feedback, or rely heavily on simulation. In contrast,
our work targets a broad class of spatially transformative tasks that require reasoning over visual
state changes rather than contact dynamics alone, exploiting a unified visual representation that is
shared across objects and state-change tasks.

Visual representations for robot learning. To accelerate downstream policy learning, recent
works pretrain visual representations on large-scale data [12, 21-23]. More relevant to our novel
visual rewards, VIP [23] learns an implicit value function over egocentric videos, while its exten-
sion LIV [12] further incorporates language-goal embeddings. There is also growing interest in
LLMs [24] & VLMs [25] for robotic reasoning, typically using frame-level goal matching or sym-
bolic planning. In contrast, SPARTA leverages a VLM for spatial reasoning over localized object
regions, enabling dense reward generation and supporting both efficient planning and online RL for
visually complex manipulation.

Affordances in robotics. Understanding how and where to interact with objects has driven a surge
of interest in affordance-based functional grasping [26-31]. Parallel efforts in computer vision
predict hand-object interactions [32-34], but they emphasize pick-and-place or grasping tasks. In
contrast, we tackle a fundamentally different class of affordance—spatially evolving, visual object
state transformations that generalize across tasks and robot embodiments. To our knowledge, this
represents the first affordance reasoning approach for such manipulations achieving non-rigid object
interactions on a real robot.

Object state change understanding. OSC is explored in computer vision for video-level classi-
fication [6, 7], segmentation [8, 35, 36], and generation [37]. Our work is inspired in part by the
spatially progressing object state change (SPOC) task [8], which segments state-changing objects
into actionable and transformed regions. Trained on large-scale instructional “how-to” videos [38],
SPOC exhibits robust spatial reasoning across diverse objects and transformations. However, these
models are vision-only: they passively analyze state changes but do not inform robot control. Our
work bridges that gap. By integrating vision-based OSC understanding into robot manipulation, we
show how robots can learn to act using SPOC-style affordances capturing gradual visual progress—
difficult to address with tactile sensing [19], force models, or binary state classifiers [2, 39].

Real-world Reinforcement Learning Real-world RL enables autonomous policy learning directly
from real-world interactions, avoiding the need for explicit world models or high-fidelity simulators.
This makes it particularly promising for contact-rich manipulations, where accurate modeling is no-
toriously difficult [40, 41]. However, when tasks require progressive object state changes, existing
methods struggle on two fronts: first, learning visual representations that capture subtle intra-object
changes; and second, defining reward functions that provide dense, informative feedback [11, 42].
These challenges lead to poor sample efficiency and hinder real-world applicability. Our work tack-
les both issues by leveraging spatially progressing OSC segmentation maps, leading to successful
policy learning on challenging tasks.

3 Robotic Object State Change

Our goal is to enable robots to perform object state change (OSC) tasks, where the object’s morphol-
ogy, texture, or appearance evolve progressively over time. Unlike traditional robotic manipulation,
which focuses on moving rigid objects in space (e.g., pick-and-place or pushing), OSC tasks demand
reasoning about transformations within the object itself. The challenge is not simply to change an
object’s kinematic state, but to decide where and how to act on deformable regions so as to drive
continuous, irreversible changes in the object’s physical state. This fundamentally alters the prob-



lem: the robot must perceive gradual transformations, localize actionable regions, and sequence
fine-grained actions that accumulate toward a globally transformed outcome.

Problem Formulation. We formulate OSC
task as a Partially Observable Markov Deci-
sion Process (POMDP) (S, A, T,Q,r, po,7),
where S are the true environment states, A are
robot actions, {2 are the observations, 7 (s;41 |
st,at) governs state evolution, 7(sy, at) pro-
vides feedback, pg is the distribution over ini-
tial states, and ~ is the discount factor. The
goal is to learn a policy m(a; | w<;) that max-
imizes expected discounted return: J(w) =

Er [Zf_ol Y7 (se, at)]
ability arises because the underlying object
state (e.g., which region of a banana is mashed)
is not directly available—only visual observa-
tions and proprioception are accessible. Unlike
motion-centric tasks where object poses pro-
vide a sufficient state proxy, in OSC we need
observation spaces that faithfully approximate
these hidden, spatially evolving states.

. Here, partial observ-

Observation Space.  The robot operates in
a tabletop workspace with a single object pre-
sented at random orientations. Each observa-
tion w; € € is represented by visual and propri-
oceptive components, {2 = O x P. At time ¢,
the robot receives an RGB observation o; € O
from a fixed camera and proprioceptive input
pt € P encoding end-effector position. The
key challenge is that raw RGB frames, while vi-
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Figure 2: Overview of SPARTA. At each episode
step, our policy takes the current and past SPOC [§]
visual-affordance (segmentation) maps as inputs, along
with the robot arm’s proprioception data and pre-
dicts a displacement action for the arm’s end-effector.
SPARTA supports two robot policy variants: (a)
SPARTA-L (Learning): a reinforcement learning agent
trained using a dense reward that measures the progres-
sive change of object regions from actionable (red) to
transformed (green). (b) SPARTA-G (Greedy): selects
among 8 discrete directions based on the local density
of actionable pixels, producing a fast, greedy policy
guided by visual progress.

sually rich, entangle object-specific appearance

with the underlying dynamics of state change. For robots, this makes it difficult to learn sample-
efficient, generalizable policies from limited real-world data. What is needed instead are structured
visual abstractions that strip away appearance-specific detail while preserving cues that reflect how
the object is evolving over time, bringing the observation space closer to the task-relevant state
representation. We introduce such a representation in Sec. 4.

Action Space. While classical manipulation often requires planning global object motions, OSC
tasks demand acting at specific intra-object locations to drive localized transformations (e.g., press-
ing unmashed potato chunks or brushing uncoated regions of bread). To reflect this, we constrain the
action space to a 2D manifold aligned with the object surface, enabling policies to directly reason
about where to apply tool actions. Concretely, the policy outputs continuous Az, Ay displacements,
sampled from a Gaussian centered at the mean predicted by 7. At the resulting (x,y) location, a
task-specific primitive is executed: sweeping motions for spreading, downward pressing for mash-
ing, or slicing strokes. This structured action space both mirrors the spatially progressive nature of
OSC tasks and reduces complexity, making it possible to learn sample-efficient policies that gener-
alize across objects.

Next we provide a detailed framework for SPARTA, leveraging visual spatial progress to solve
robotic OSC tasks.



4 SPARTA: Robot Policies for OSCs via Visual Spatial Progress

4.1 Integrating SPOC Visual Affordances for Robotics

To provide structured visual abstractions for OSC manipulation, we adapt the Spatially Progressing
Object State Change (SPOC) task [8], which segments objects into actionable and transformed re-
gions (e.g., plain vs. coated bread). Given RGB frames oy, . .., or, SPOC produces binary masks
o) = ojrt, ofrf that serve as the robot’s sole visual input, stripping away appearance variability
and supplying interpretable, object-centric progress maps (Fig. 2). For real-time robot learning, we
generate SPOC masks online using SAM [43] + GPT-40 [44] with DeAOT [45] propagation for
real-time control (details in Appendix Sec. B). Crucially, SPOC affordances capture what transfor-
mations look like from large-scale human vision data without assuming embodiment, while binary
actionable/transformed masks replace raw RGB, enabling generalization across novel objects and
materials. SPARTA exploits SPOC affordances through two variants: SPARTA-L ( 4.2), which
uses SPOC rewards for real-world online RL, and SPARTA-G ( 4.3), which greedily selects actions
from SPOC maps. A shared MDP formulation with SPOC-based states and rewards enables both
adaptive learning and reactive planning within a unified framework.

4.2 SPARTA-L: Reinforcement Learning with SPOC rewards

Object state change tasks demand sequential decision-making: each action transforms only a local
region of the object, and the robot must continually decide where fo act next to optimize long-term
task success. Reinforcement learning (RL) naturally fits this setting, as it optimizes long-horizon
returns rather than immediate feedback.

A central challenge in real-world RL, however, is reward design. Sparse, binary success signals
provide little guidance for sample-efficient training, while dense, automated feedback is rarely avail-
able [11]. For instance, coating an additional patch of bread or mashing a new section of banana is
meaningful progress toward the goal, but this nuance is lost with simple binary rewards. As we show
in Sec. 5, such dense feedback is essential for stabilizing exploration and driving sample-efficient
learning in the real world.

To address this, we design a dense, spatially grounded reward function that reflects incremental
progress and enables real-time, demonstration-free learning:

re = OZprOC _|_ ﬁRfuCC + T]Rtentropy' (1)

Here, R{"“¢ is a sparse terminal reward for task completion (when >95% of the object is trans-
formed), and R{"™""°"Y promotes action diversity and exploration. The key novel component, R;"*¢
(see Fig. 2-a), provides dense feedback at every step by quantifying newly transformed area since

the previous timestep:

AtTf o Atrf
Rspoc _ t+1 t (2)
t A?ct

where Airf and A¢“" denote the transformed and actionable areas of SPOC segmentation maps
o;”f and 0}, Unlike sparse success rewards, this formulation rewards incremental transformation

of new regions, focusing the agent on actionable areas while avoiding redundancy.

The result is an object-centric, task-agnostic reward that captures fine-grained spatial progress from
vision alone. It eliminates the need for simulation, privileged state, or human demonstrations, and—
as shown in Sec. 5—yields smooth, monotonic learning curves for real-world OSC tasks. For policy
optimization, we build on SERL [42], using Soft Actor-Critic (SAC) [46] with regularization from
RLPD [47] for sample-efficient off-policy learning directly in the real world. Unlike SERL, how-
ever, SPARTA does not rely on any human demonstrations. Instead, visually grounded rewards
derived from SPOC affordances are sufficient to drive sample-efficient real world RL.



4.3 SPARTA-G: Greedy Policy with SPOC Maps

While RL provides a general framework for policy learning under noisy perception, some OSC tasks
admit simpler solutions. With large, symmetric tools (e.g., a masher), each action covers broad areas,
making control less sensitive to perceptual errors or misalignment. In such cases, a greedy policy
that moves toward untransformed regions can suffice. By contrast, tasks with thin, asymmetric
tools (e.g., spreading with a brush) demand precise, noise-robust control, where RL offers a clear
advantage.

To capture the easier regime, we introduce SPARTA-G, a non-parametric greedy controller that
exploits spatial priors in SPOC maps. At timestep ¢, given a segmentation o't € (' labeling pixels
as actionable, transformed, or background, and the end-effector position p;, the controller evaluates

8 candidate motions agl)i = 18 in the zy-plane (see Fig. 2-b). For each, it computes the density of

actionable pixels in a neighborhood N (p; + ay)) and selects the best direction:
= I[o'(x) = actionabl
a; = arg m?)x Z [0'(x) = actionable], 3)

€N (¢ +a,(5i>)

where I[-] is the indicator. This steers the tool toward regions most likely to yield progress.

Though it requires no training, SPARTA-G still defines a policy: a deterministic mapping from
SPOC-derived state features to actions. It is lightweight, fast to deploy, and effective for coarse
transformations. As shown in Sec. 5, however, SPARTA-L achieves superior performance in tasks
needing fine directional control. Together, the two variants demonstrate how spatial progress maps
support both greedy control and reinforcement learning within one framework.

5 Experimental Evaluation

Manipulation tasks & objects. We evaluate three cooking-related OSC tasks—spreading, mash-
ing, and slicing—each involving irreversible structural and appearance changes that challenge per-
ception, affordance reasoning, and reward design. Experiments span 10 diverse objects with varied
shapes, textures, and colors (Table 4a), testing both visual robustness and policy generalization.

Training and implementation details Experiments use a 7-DoF Franka Emika Panda with torque
sensing, a 3-finger gripper, and a front camera providing RGB input. Tasks are structured into
short episodes (10 steps for spreading, 5 for mashing/slicing) starting from a fixed workspace cor-
ner. SPARTA-L trains efficiently under real-world budgets—~-3 hrs for spreading and ~1.5 hrs for
mashing/slicing—using clay proxies and a few greedy rollouts to simplify resets and stabilize explo-
ration. Policies are learned with asynchronous SAC from SERL [42], and visual and proprioceptive
inputs are encoded with lightweight networks. The same protocol is applied across baselines for fair
comparison. Details in Appendix Sec. A.

Comparisons. We benchmark against three baselines:

(1) RANDOM: a control baseline with actions sampled uniformly randomly within the constrained
action space, reflecting unstructured exploration with no task guidance.

(2) SPARSE: a sparse reward baseline using only a binary task completion reward, queried from
GPT-4o0 via task-specific prompts on the final image (e.g., “Is the bread fully coated with
ketchup?”). A “yes” ends the episode with +1 reward; otherwise, no reward is given. This
mirrors our use of VLMs for SPOC mask generation.

(3) LIV [12]: a state-of-the-art goal-conditioned representation learning method trained on human
activity videos [10, 48]. Rewards are computed from state embedding similarities to a language
goal. We directly prompt LIV with a natural language description of the OSC task and object
(e.g., “coat bread with ketchup”).
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Figure 3: Reward curves for bread-spreading task. a) Cumulative episode reward curves: SPARTA produces
smooth, incremental rewards aligned with visual progress, while LIV rewards remain unstable throughout the
episode, offering poor guidance. b) Training curves: stable, dense feedback drives sample-efficient learning,
with SPARTA rapidly improving while SPARSE and LIV stagnate.

The baselines represent two dominant ap-
proaches: sparse rewards with minimal
supervision and pretrained goal-based vi-
sual representations. They highlight the
limitations of current visual RL meth-
ods when applied to fine-grained OSC
tasks. We do not include tactile-based
or simulation-heavy methods [13, 14],
as they require task-specific instrumen-
tation. Further, unlike imitation learn-
ing approaches, SPARTA does not re-
quire demonstrations. Thus, we focus on
general, vision-driven approaches requir-
ing no human demonstrations—hence di-
rectly comparable to SPARTA.

Metric. We measure performance us-
ing transformation coverage: the % of
the object’s area that has changed state by
the end of an episode. Coverage is com-
puted from SPOC segmentations and cor-
rected using [49] with human annotators
to ensure reliability. Unlike binary suc-
cess, this continuous metric captures par-
tial progress, providing a more sensitive
evaluation of OSC performance.

Experiments and Results:

In our experiments, we aim to answer
three key questions:

Q1) How stable and sample-efficient is
the learning process? A key deter-
minant of real-world sample efficiency
is the stability of dense rewards within
each episode [50]. Fig. 3-a shows cu-
mulative reward curves for SPARTA-L
and LIV across sample episodes on the
bread-spreading task. SPARTA produces

Spread Slice Mash
Seen Unseen Seen  Unseen |Seen Unseen

Model j ‘.‘ jg \ ' \\ | .%

RANDOM 024 | 042 0.27 029 023 [0.13]| 0.15 0.14 [0.18| 0.14 0.23 0.20
SPARSE 0.14 | 0.10 0.07 0.11 0.13 [0.09| 0.08 0.09 [0.13] 0.08 0.09 0.18
LIV [10] 0.17 | 0.14 0.12 0.16 0.12 {0.10{ 0.09 0.11]0.13| 0.09 0.10 0.08
SPARTA-G| 0.44 | 0.49 0.55 0.66 0.39 [0.52] 0.48 0.51(0.75| 0.69 0.71 0.75
SPARTA-L| 0.61 | 0.55 0.58 0.63 0.42 |0.78] 0.69 0.72|0.77| 0.72 0.62 0.68

(a) SPARTA shows strong training and generalization results
for objects with varying textures, colors and shapes. Metric is
transformation coverage (%). Results averaged over 3 seeds,
5 rollouts per seed (15 evaluations total).
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(b) SPARTA shows strong training and generalization results
for objects with varying textures, colors and shapes.

Figure 4: SPARTA results

smooth, monotonic curves that align directly with visual progress, leading to consistent incremental

rewards. In contrast, LIV rewards fluctuate

erratically, reflecting how goal-conditioned embeddings

fail to capture fine-grained transformation dynamics. These unstable signals offer poor guidance,

leading to degenerate solutions over time.



This reward stability translates into far more efficient training (Fig. 3-b). SPARTA-L exhibits steep,
monotonic learning curves from the very first episodes, often reaching usable policies (>60% cov-
erage) within just 90 minutes of real-world training. By contrast, both SPARSE and LIV remain
flat, unable to improve beyond chance due to the absence of dense, progress-aware feedback. In-
terestingly, the affordance prior also acts as an implicit curriculum: early on, policies focus on
small patches of the object, before gradually covering larger regions and learning strategies such as
reversing direction near object boundaries.

Together, these results demonstrate how SPARTA’s dense rewards provide stable, interpretable
feedback that not only reflects spatial progress but also drives sample-efficient policy learning in
the real world.

Q2) How well does SPARTA perform complex object state changes?  Table 4a evaluates
SPARTA on three tasks with seen and unseen objects, with qualitative examples in Fig. 4b. Both
variants—SPARTA-G (greedy) and SPARTA-L (learning)—substantially outperform all baselines,
highlighting the value of spatial object-centric affordances. SPARSE offers little guidance, and
LIV [12], despite strong representation learning, fails to track fine-grained spatial progress. Even
the simple RANDOM policy surpasses these baselines, illustrating how weak or unstable rewards can
cause RL policies to collapse without sufficient entropy.

Among our methods, SPARTA-G leverages directional priors to reliably target actionable regions,
excelling in mashing where symmetric tools reduce sensitivity to noise. SPARTA-L dominates
in spreading and slicing, where asymmetric tools demand precise, noise-robust control and long-
horizon optimization enables pixel-accurate transformations.

Overall, spatial OSC segmentation emerges as a versatile representation that supports both fast
greedy planning and robust reinforcement learning, depending on task demands. We discuss limita-
tions in Appendix Sec. C.

Q3) What is the utility of state change seg- Episode Start ObjMask SPARTA
mentations for robot learning over plain ob- &% ° H
ject segmentation maps? To isolate the ben- = M 5
efit of SPOC affordances over traditional object T j
segmentation, we compare SPARTA-G against
a greedy baseline that traverses the entire ob-
ject segmentation mask without reasoning about
state change. We initialize objects in partially
transformed states (e.g., a half-mashed banana)
and evaluate if the policy can target the remain-
ing untransformed regions (see Fig. 5). The object segmentation baseline, being agnostic to intra-
object state change, wastes actions by repeatedly revisiting already transformed regions (e.g., mash-
ing an already mashed banana segment). In contrast, SPARTA-G, exploits SPOC maps to selectively
target only the actionable (untransformed) regions, achieving 3 x higher coverage efficiency. This
validates the efficacy of SPARTA for spatially-progressive manipulation policies that reason over
state change dynamics—not just object presence.

Figure 5: Unlike OBIMASK, which wastes actions
on already transformed regions, SPARTA targets only
actionable areas for efficient state progression.

6 Conclusion

This work investigates real-world robot learning for a family of spatially-progressing manipulation
tasks—such as spreading, mashing, and slicing—by leveraging dense visual affordances that signal
object state change. Our method, SPARTA, uses a unified spatial-progress representation to support
both greedy planning and reinforcement learning, allowing policy generation for very challenging
tasks without simulation or human demonstrations, while being generalizable across diverse objects.
Overall, SPARTA demonstrates that progress-aware affordances can unlock a family of object state
manipulations essential for everyday tasks, charting a path beyond rigid-body control.
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A Implementation Details

Tool-use primitives. To translate high-level policy outputs into physical interactions, we define
simple task-specific motion primitives at the predicted 2D location on the object, following prior
work using motion primitives for point-based control [51, 52]. For spreading, the robot executes
in-plane brush strokes, automatically “refilling” the brush every two steps to keep it coated; z-height
is fixed relative to the estimated object surface. For mashing and slicing, it performs a lateral motion
followed by a downward press until a preset force threshold is reached. In all tasks, the tool is lifted
after each action to avoid visual occlusion before capturing the next observation.

Robot platform. All experiments are conducted on a Franka Emika Panda robot, a 7-DoF collab-
orative manipulator equipped with torque sensing in each joint and a 3-finger parallel gripper. Its
precise joint control and compliant torque feedback make it well-suited for fine manipulation tasks
such as spreading, mashing, and slicing. A front-facing camera provides RGB observations for the
vision model.

Training details. To keep training grounded in real-world constraints, we set episode lengths
to match the natural granularity of each task. For spreading, episodes last 10 steps to reflect the
smaller coverage per action, while for mashing and slicing, 5 steps suffice due to the broader area
transformed by each action. All episodes begin from a fixed corner of the workspace for consistency.
For SPARTA-L, we train policies with short real-world budgets: spreading is trained for 40 episodes
(~3 hours at 1 Hz, including brush refills and resets), while mashing and slicing converge within
~1.5 hours thanks to shorter episodes. To simplify resets, we use clay proxies for mashing and
slicing, and bootstrap exploration with a handful (~5) greedy rollouts, which stabilize early training.
For policy learning, we adopt asynchronous SAC from SERL [42], finding that an actor-to-critic
update ratio of 1:10 yields the best balance between policy improvement and stable value estimation.
Other hyperparameters follow standard practice (learning rate 3e-4 with warmup, v = 0.95, reward
weights « = 1,5 = 1,7 = 0.001). Visual inputs are encoded via a ResNet-10 backbone, and
proprioceptive inputs through a two-layer MLP. The same training protocol is applied across our
method and baselines to ensure fair comparison.

B Integrating SPOC for Robotics

We adapt SPOC for robotics by generating SPOC affordance maps directly from real-time visual
observations. While prior work [8] leverages Grounded-SAM ([53] and CLIP [54], we find that
replacing CLIP with a stronger vision-language model (VLM) such as GPT-40 [44] significantly
improves segmentation accuracy—particularly in distinguishing intra-object regions (e.g., partially
mashed banana). Instead of assigning a single label to the entire object mask, we sample multiple
intra-object regions using farthest-point prompts with SAM, and classify each via GPT-40 into ac-
tionable or transformed states. Since per-frame GPT queries are slow (~5s), we introduce a fast
mask propagation strategy using DeAOT [45] tracking (~0.2s/frame) to boost real-time throughput
for robotic control. See Fig. 6 for the full pipeline. These affordance maps offer dense, object-
centric structure that is crucial for shaping progress-based rewards and guiding spatial-aware policy
learning.

C Limitations and Future Work

While effective, SPARTA also reveals open challenges that suggest avenues for future research.
First, our approach depends on SPOC affordance maps, which can occasionally exhibit noise or
tracking inconsistencies—especially during fine-grained transitions. Nonetheless, we do observe
some policy robustness to those errors, due to repeated exposure to accurate predictions and the
dense reward formulation, which allows learning to proceed even when intermediate frames are
noisy, as long as progress is eventually captured. Future work can explore vision segmentation
model enhancements. Second, although policies generalize to new objects, performance degrades
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Figure 6: Our SPOC affordance map generation pipeline. (a) Grounded-SAM [53] is used to extract
an object mask from the initial frame. (b) Farthest-point sampling generates intra-object regions, classified
into actionable or transformed by prompting GPT-40 [44] using color-coded overlays. (c¢) Once classified,
transformed regions are tracked across subsequent frames using DeAOT [45] to maintain temporal consistency
with minimal computation.

on unseen geometries—for example, a policy trained on rectangular slices may struggle with circular
tortillas. Addressing this gap calls for shape-aware training or augmented experience. Third, our
current pipeline avoids occlusion by only capturing visual inputs when the end-effector lifts between
actions, precluding continuous perception during contact. Developing occlusion-resilient, contact-
aware visual reasoning remains an open challenge. Overall, SPARTA demonstrates that progress-
aware affordances can unlock a family of object state manipulations essential for everyday tasks,
charting a path beyond rigid-body control.
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