Interleave-VLA: Enhancing Robot Manipulation with
Interleaved Image-Text Instructions
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Figure 1: (a) Our Interleaved X-Embodiment Dataset features diverse, high-quality object-centric
images automatically generated from real-world robot demonstrations. (b) Interleave-VLA achieves
2x stronger out-of-domain generalization compared to text-only VLA models in both simulation
and real-robot experiments. (c) It enables flexible, zero-shot instruction following with user-
provided, web images, and hand-drawn sketches for practical and intuitive human-robot interaction.

Abstract: The rise of foundation models paves the way for generalist robot poli-
cies in the physical world. While existing methods relying on text-only instruc-
tions struggle to generalize to unseen scenarios, we argue that interleaved image-
text inputs offer richer context, enabling robots to better handle unseen tasks
and environments. In this paper, we introduce Interleave-VLA, the first frame-
work capable of comprehending interleaved image-text instructions and directly
generating continuous action sequences in the physical world. It offers a flexi-
ble, model-agnostic paradigm that extends state-of-the-art vision-language-action
(VLA) models with minimal modifications and strong zero-shot generalization. A
key challenge in realizing Interleave-VLA is the absence of large-scale interleaved
embodied datasets. To bridge this gap, we develop an automatic pipeline that con-
verts text-only instructions from real-world datasets in Open X-Embodiment into
interleaved image-text instructions, resulting in the first large-scale real-world in-
terleaved embodied dataset with 210k episodes. Through comprehensive evalua-
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tion on simulation benchmarks and real-robot experiments, we demonstrate that
Interleave-VLA offers significant benefits: 1) improves out-of-domain generaliza-
tion to unseen objects by 2x compared to state-of-the-art baselines, 2) supports
flexible task interfaces, and 3) handles diverse user-provided image instructions
in a zero-shot manner, such as hand-drawn sketches. We further analyze the
factors behind Interleave-VLA’s strong zero-shot performance, showing that the
interleaved paradigm effectively leverages heterogeneous datasets and diverse in-
struction images, including those from the Internet, which demonstrates strong
potential for scaling up. More information can be found at our website.

Keywords: vision language action models, multimodal foundation models,
robotic manipulation

1 Introduction

The remarkable success of large language models (LLMs) [1, 2, 3, 4] and vision-language models
(VLMs) [5, 6, 7, 8, 9] has established the paradigm of foundation models in the digital world, which
are capable of generalizing across a wide range of tasks and domains. Inspired by this progress, the
robotic community is actively developing robotic foundation models [10, 11, 12, 13, 14, 15] to bring
similar generalizability to unseen tasks and scenarios into the physically embodied world. Despite
these advances, effective out-of-domain generalization of robotic policies remains a key challenge.
We argue that the predominant reliance on text-only instructions in current generalist robotic policies
constrains their ability to generalize. Text instructions often prove ambiguous or cumbersome in
scenarios where users need to specify goals like “pick up an object like this,” referring to a uniquely
shaped or colored item. In contrast, interleaved image-text instructions allow robots to interpret
unseen tasks more effectively by providing in-context visual and textual cues, beyond what text
instructions alone can convey.

Only few existing works, such as VIMA [16], explore the use of interleaved instructions in robotics,
evaluating vision-language planning tasks within a high-level 2D action space in simulation. How-
ever, they have not investigated the broader benefits of interleaved instructions, such as (1) their
advantages over text-only instructions and (2) their applicability to real-world scenarios involving
low-level robotic actions. As a result, the practical value of this paradigm remains underexplored
due to a lack of real-world datasets and policies capable of handling such input, as shown in Figure 1.

To develop a general and practical robot policy capable of acting on interleaved image-text instruc-
tions in the real world, a straightforward solution is to build upon VLA [11, 12, 17, 10, 13, 18]
models, which naturally extend VLMs by incorporating action understanding and generation, mak-
ing them well-suited for robotic tasks. However, existing VLAs [10, 11, 13] are trained primarily
with text-only instructions. This limits their ability to benefit from multimodal instruction signals,
which have been shown to enhance generalization in vision-language learning [1, 18]. This restric-
tion not only reduces instruction flexibility but also prevents these models from leveraging the richer
semantics and improved grounding afforded by interleaved multimodal signals. To address this lim-
itation, we propose a new paradigm called Interleave-VLA, a simple and model-agnostic extension
that enables VLA models to process and reason over interleaved image-text instructions.

High-quality image-text interleaved datasets are crucial for training Interleave-VLA. In order to
bridge the gap of the lack of image-text interleaved datasets in robotic manipulation, we develop
a pipeline to automatically construct interleaved instructions from existing datasets. The pro-
posed pipeline enables automatic and accurate generation of interleaved instructions from real-world
dataset Open X-Embodiment [12]. The resulting interleaved dataset contains over 210k episodes and
13 million frames, making it the first large-scale, real-world interleaved embodied dataset. This en-
ables training Interleave-VLA with real-world interaction data and diverse visual instruction types.

We demonstrate Interleave-VLA’s effectiveness by adapting two leading VLA models, Open-
VLA [11] and mq [13], with minimal architectural changes, hence to be widely applicable to future
generations of VLAs. Experimental results show that Interleave-VLA consistently outperforms its
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text-only counterparts for both in-domain and out-of-domain tasks. Notably, the interleaved format
enables strong zero-shot generalization to novel objects and even user-provided sketches never seen
in the training dataset, highlighting the robustness and flexibility of our method, as in Fig. 1.

Our core contribution can be summarized as follows.

* We introduce a fully automated pipeline that converts text-only instructions into image-text in-
terleaved instructions, creating the first large-scale, real-world interleaved embodied dataset with
210k episodes and 13 million frames based on Open X-Embodiment.

* We propose Interleave-VLA, a simple, generalizable, and model-agnostic adaptation that enables
VLA models to process interleaved image-text instructions with minimal architectural changes.
To the best of our knowledge, it represents the first end-to-end robotic policy capable of handling
interleaved inputs, marking the first extension of this paradigm to physical VLA models.

* Through comprehensive evaluations of Interleave-VLA on SIMPLER, VIMA-Bench, and real-
robot settings, we demonstrate consistent in-domain improvements and 2x gains in out-of-domain
generalization to novel objects, along with emergent zero-shot capabilities for interpreting di-
verse, user-provided visual instructions, such as hand-drawn sketches.

2 Related Work

Interleaved Vision-Language Models. In the digital domain, recent advances in vision-language
models have evolved from handling simple image-text pairs [7, 19, 20, 21] to processing arbi-
trarily interleaved sequences of images and text [5, 6, 8, 9, 22, 23, 24, 25, 26]. This interleaved
format allows models to leverage large-scale multimodal web corpora—such as news articles and
blogs—where images and text naturally appear in mixed sequences. Such models have demonstrated
improved flexibility and generalization, enabling transfer across diverse tasks and modalities [23].
Despite these successes in the digital world, robotic foundation models in the physical world have
yet to fully exploit the benefits of interleaved image-text instructions. Motivated by the progress
of interleaved VLMs, we extend this paradigm to the action modality, enabling vision-language-
action models to process interleaved instructions. Our results show that multimodal learning with
interleaved inputs greatly boosts generalization and displays emergent capabilities in robotic manip-
ulation tasks.

Vision Language Action Models. Vision-language-action (VLA) models have advanced robotic
manipulation by enabling policies conditioned on both visual observations and language instruc-
tions [11, 12, 17, 10, 13, 18, 27, 28]. Most prior VLA models process single [11] or multiple [10, 13]
observation images with text-only instructions, with some exploring additional modalities such as
3D [29] and audio [30]. VIMA [16] pioneers the use of interleaved image-text prompts as a unified
interface for robotic manipulation, primarily in simulation. However, its focus is limited to interface
design, without systematically exploring the broader advantages of interleaved instructions—such
as enhanced generalization and real-world applicability. As a result, most VLA models to date have
continued to rely on text-only instructions. In this work, we make the first step to bridge this gap
by proposing Interleave-VLA: a simple, model-agnostic paradigm that extends existing VLA mod-
els to support interleaved image-text instructions with minimal modifications. Our comprehensive
experiments demonstrate that interleaved instructions substantially improve generalization to un-
seen objects and environments, and unlock strong zero-shot capabilities for diverse user-provided
inputs. This highlights the practical value and scalability of interleaved image-text instructions for
real-world robotic manipulation.

3 Interleave-VLA and Open Interleaved X-Embodiment Dataset

3.1 Problem Formulation

Digital foundation models [5, 6, 22, 24] can process multimodal prompts with arbitrarily interleaved
images, video frames, and text as input. For robotic foundation models, this paradigm extends
naturally: the model receives a multimodal prompt and outputs an action in the robot’s action space.
A typical example of a standard text-only instruction and our interleaved instruction can be:



fork
e Utensils
p

Cleaning Supplies

Open
Interleaved

Shapes & Blocks

X-Embodiment Qwen2.5.VL
Dataset
Food & Snacks ° 9
The point of Detect
eggplant is eggplant
" ] <xl=, yl=>
Point-Driven Yes, -
Segmentation T Itisaplate. 3’ €) Open-Vocabulary Detection

Kitchenware

0Q) sam 2

Figure 2: Left: Our open interleaved X-Embodiment dataset features a large number of high-quality
cropped images with diversity across objects. Right: Interleave dataset generation pipeline: (1)
Instruction parsing: use LLM to extract key objects from language instructions. (2) Open-vocabulary
detection: use OWLv2 to locate and crop target objects from trajectory frames based on the parsed
instruction keywords. (3) Data quality Verification: use QwenVL to verify the detected objects, and
if needed, provide keypoints for more precise segmentation using Segment Anything.
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Text-only: <obs> Place [the blue spoon near microwave] into [silver pot on towel].
Interleaved image-text: <obs> Place [imagel ] into [image2 1.

where <obs> is the observation image(s), and [imagel [fieg ] and [image2 1 are images that
represent the target object and the destination, respectively.

3.2 Interleave-VLA

Our Interleave-VLA framework models the action distribution P(A¢|o;) in a Markovian manner,
based on current observation o, = (I;,Z, q) at time ¢. Here, I; is the observation image(s), q is the
robot’s proprioceptive state, and Z is an image-text interleaved instruction. The instruction 7 is a
sequence that mixes text segments [; and images I;, that is, Z = (I1,1;,1s,Io,...). Existing VLA
using text instruction is a special case where Z = (1) contains only a single text segment.

Interleave-VLA 1is a straightforward yet effective adaptation of existing vision-language-action
(VLA) models. It modifies the input format to accept interleaved image and text tokens, without
changing the core model architecture. We demonstrate this approach by adapting two state-of-the-
art VLA models. For OpenVLA [11], we replace the original Prismatic [31] VLM backbone with
InternVL2.5 [25], which is pretrained on interleaved image-text Internet data. For m( [13], we retain
the original architecture and only adjust the input pipeline to handle interleaved tokens. It is particu-
larly noteworthy that, despite the underlying Paligemma [32] VLM not being pretrained on Internet-
scale interleaved data, Interleave-my can still learn to effectively process interleaved instructions.
This model-agnostic adaptation requires minimal changes in architecture and significantly enhances
the zero-shot generalization capabilities of base models, as shown in our experiments. For more
details, see Appendix A.

3.3 Construction of Open Interleaved X-Embodiment Dataset

A large-scale pretraining dataset is essential for Vision-Language-Action (VLA) Models to learn ac-
tions and generalize, as reported in OpenVLA [11] and 7 [13], this is also the case with Interleave-
VLA. However, most current real-world datasets provide text-only instructions and thus do not sup-
port training interleave-VLA models directly. We consequently design a unified pipeline to auto-
matically relabel and generate interleaved data across diverse datasets.

Our overall dataset generation pipeline consists of three main steps: instruction parsing, open-
vocabulary detection, and data quality verification, as illustrated in Figure 2. First, for instruc-
tion parsing, we use Qwen2.5 [33] to extract key objects from language instructions. Compared
to rule-based NLP tools like SPaCy [34], LLM prompting is more robust and adaptable to diverse
instruction formats. It also enables concise summarization of complex or lengthy instructions, as in
datasets such as Shah et al. [35]. Second, for open-vocabulary detection, we use the state-of-the-art
open-vocabulary detector OWLv2 [36] to locate and crop target objects from trajectory frames based
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Figure 3: Left: Illustration of generalization settings in SIMPLER. (a) Visual generalization: unseen
environments, tablecloths, and lighting conditions. (b) Semantic generalization with novel objects
from known categories. (c) Semantic generalization with objects from entirely new categories not
seen during training. Right: Real-world generalization experiments. In-Domain and out-of-Domain
settings in the real world on a FANUC LRMate 200iD/7L robotic arm.

on the parsed instruction keywords, achieving 82.6% accuracy. Finally, we introduce data quality
verification for harder cases where OWLv2 fails: Qwen2.5-VL [5] verifies the detected objects, and
if needed, provides keypoints for more precise segmentation using Segment Anything [37]. This
combined approach boosts cropping accuracy for challenging objects (e.g., eggplant), thus improv-
ing overall accuracy to 95.6%, ensuring high-quality interleaved data for downstream tasks.

We apply the dataset generation pipeline to 11 datasets from Open X-Embodiment [12]: RT-1 [17],
Berkeley Autolab URS5 [38], IAMLab CMU Pickup Insert [39], Stanford Hydra [40], UTAustin
Sirius [41], Bridge [42], Jaco Play [43], UCSD Kitchen [44], BC-Z [45], Language Table [46],
and UTAustin Mutex [35] to form the first large-scale interleaved cross-embodiment dataset in real
world. The curated dataset contains 210k episodes and 13 million frames, covering 3,500 unique
objects and a wide range of task types.

4 Experiments

In the experiments, our aim is to discuss the following questions: (1) How is the in-domain and out-
of-domain performance of Interleave-VLA compared to vanilla VLA? How well does it generalize
to unseen objects and environments? (2) What additional emergent generalization capabilities does
Interleave-VLA demonstrate? (3) Does Interleave-VLA have the potential for scaling?

4.1 Experiment Setup and Tasks

Environments. We conduct comprehensive experiments of interleave VLAs against their text-only
counterparts in both simulator-based evaluation and real robot evaluation. We use SIMPLER [47]
and VIMA-Bench [16] as our simulation environments. SIMPLER is designed to closely match
real-world tasks and bridge the real-to-sim gap. We adapted SIMPLER to support interleaved
image-text instructions, allowing us to evaluate the performance of Interleave-VLA models in a
realistic setting. The interleaved instruction is generated automatically by our pipeline in Section
3.3. VIMA-Bench is designed to experiment with interleaved instruction following abilities that
natively focus on evaluation of planner-based tasks, where models are evaluated on object recog-
nition and multitask understanding. We also conduct real robot experiments on FANUC LRMate
200iD/7L robotic arm outfitted with an SMC gripper.

Tasks. For SIMPLER, we evaluate on the Visual Matching setup on the WidowX robot. This setup
is designed to test the model’s in-domain capability by closely matching the real-world training and
simulated evaluation distributions. To comprehensively evaluate generalization, we design two main
categories of tasks following Stone et al. [48]: visual generalization and semantic generalization.
Visual generalization assesses robustness to novel tablecloth, lighting, and environments. Semantic
generalization assesses the model’s ability to correctly identify and manipulate target objects in the
presence of diverse distractors. This evaluation is further divided into two categories: (1) novel
objects from previously seen categories, and (2) objects from entirely new, unseen categories. See



Table 1: Benchmark results on SimplerEnv. Tasks T1-T4 are In-Domain Visual Matching setup.
We add 3 Out-of-Domain evaluation suites, namely: Visual, Semantic L1, and Semantic L2 cor-
responding to (a), (b), and (c) respectively on the left of Figure 3. Interleave-VLA performs better
than its text counterpart by over 2.5x in Out-of-Domain semantic generalization tasks. We use bold
and underline to represent the 15% and 2" highest numbers.

In Domain Out-of-Domain
Model Name
T1: Carrot T2: Eggplant T3: Spoon T4: Stack Visual Semantic L1 Semantic L2 AVG
RT-1-X [12] 4.2 0.0 0.0 0.0 0.0 4.0 6.1 34
Octo [49] 12.5 41.7 15.8 0.0 12.6 10.8 8.4 10.6
o [50] 52.5 87.9 83.8 52.5 714 26.7 21.0 39.7
Interleave-VLA 57.5 94.2 80.8 51.6 73.4 63.7 53.0 63.4
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Figure 4: Attention Figure 5: VIMA-Bench results across four levels of generalization: L1
maps on ‘“‘zucchini” (object placement), L2 (novel combination), L3 (novel object) and L4
manipulation  task. (novel task). Interleave-VLA consistently outperforms OpenVLA across
(a) Interleave-VLA all levels, showing stronger generalization from interleaved instructions. It
(b) Text-input VLA surpasses other interleaved baselines thanks to superior VLA architecture.

left part of Figure 3 for an overview. For VIMA-Bench, we strictly follow its original setting and
evaluate baselines on proposed tasks from four difficulty levels. For real robot experiments, we
evaluate two different manipulation tasks: (1) pick up food&fruits, and (2) pick and place kitchen-
wares. These tasks also evaluate semantic generalization in line with the SIMPLER setup. Refer to
right part of Figure 3 for this experimental setup. Appendix B provides more details.

4.2 Simulation Performance

For SIMPLER, we adapt the state-of-the-art VLA model 7y [13] into Interleave-VLA to support
interleaved instructions. Interleave-VLA and other baselines are trained on the full Bridge Data V2
[42] for fair comparison, with Interleave-VLA using the interleaved version. Our results demonstrate
that interleaved instructions not only enhance performance on standard in-domain tasks, but more
importantly, enable 2-3x stronger generalization to semantically out-of-domain tasks. To qualita-
tively support these quantitative results, we compute the attention score of the prompted target object
tokens relative to the tokenized observation. As shown in Figure 4, Interleave-VLA focuses entirely
on the target object (zucchini) while ignoring distractors, whereas the text-input VLA 7 allocates
the majority of its attention to them. This demonstrates that Interleave-VLA outperforms vanilla
text-input VLA baselines through in-context visual grounding enabled by interleaved instructions.

In VIMA-Bench, we adapt another SOTA VLA model OpenVLA [11] into Interleave-VLA to sup-
port interleaved instructions, demonstrating the broad applicability of our approach. We benchmark
Interleave-VLA against end-to-end VLA models (Gato, Flamingo, GPT) adapted for interleaved in-
struction inputs. Our results show that Interleave-VLA consistently outperforms the original Open-
VLA across all levels of generalization, achieving over 2 x higher performance on average. Note
that VIMA [16] is not included in comparison, as it relies on an overfitted detector to provide target
object bounding boxes, which are unavailable to end-to-end VLA models.



Table 2: Comparison of success rates (Succ) and correct object picking rates (Acc) in real-robot
experiments. Interleave-VLA adapted from 7y achieves 2-3x higher out-of-domain performance
compared to 7. “PT” indicates pretraining on our interleaved dataset built in Section 3.3. Notably,
although the pretraining dataset does not include FANUC robot arm data, it still enables strong
cross-embodiment transfer to FANUC.

In-Domain Out-of-Domain

Model Name pepper corn cup bean lemon spoon

Succ.  Acc.  Succ. Acc.  Succ. Acc. Succ. Acc. Succ. Acc.  Succ. Acc.
Interleave-VLA w/o PT 17 33 0 33 0 33 0 40 0 33 0 17

7o w/ PT 58 83 33 100 25 100 8 8 17 42 75 92

Interleave-VLA w/ PT 58 100 75 100 67 100 75 100 67 100 75 92

Model Name pasta server spoon knife spatula black spatula
Succ.  Acc.  Succ. Acc. Succ. Acc. Succ. Acc. Succ. Acc.

Interleave-VLA w/o PT 33 67 8 58 17 58 0 67 0 50

7o W/ PT 58 83 58 75 33 58 8 8 33 42

Interleave-VLA w/ PT 50 67 58 83 33 58 25 100 50 67

4.3 Real robot Performance

For real robot experiments, we evaluate two object sets, collecting 20 teleoperated demonstrations
per object using a space mouse. As shown in Table 2, our adapted Interleave-VLA from 7 achieves
2-3x higher out-of-domain performance compared to the text-only 7. Unlike the SIMPLER exper-
iments, where training on large-scale Bridge Data V2 enables strong performance out-of-the-box,
the FANUC robot experiments are limited to a much smaller dataset. In this low-data regime, di-
rectly training 7 yields poor results. However, pretraining on our Open Interleaved X-Embodiment
Dataset enables strong cross-embodiment transfer, significantly boosting performance. This emer-
gent transfer ability with interleaved image-text instructions is consistent with previous findings for
text-only instructions [12]. Such strong cross-embodiment transfer is important, as it reduces the
need for costly and time-consuming large-scale demonstration collection.

4.4 Analysis of Interleave-VLA’s Generalization and Emergent Capabilities

4.4.1 Task Flexibility and Emergent Generalization of Interleave-VLA

In diverse manipulation tasks, interleaved format introduced by VIMA [16] offers a unified
sequence-based interface. As shown in Figure 5, our Interleave-VLA effectively handles VIMA-
Bench tasks including goal image matching and multi-step instruction following (e.g., Task 4 and
Task 11), where multiple goal images must be processed in order. These results confirm the flexibil-
ity and effectiveness of image-text interleaved instructions for general robotic manipulation.

Next, we evaluate the generalization capabilities of the interleaved format in real-world scenarios,
moving beyond the simulator and high-level SE(2) action space in VIMA-Bench to SIMPLER and
real-robot experiments. Our results (Table 1 and 2) consistently show that Interleave-VLA delivers
substantially stronger generalization than text-only baselines in diverse tasks, especially in challeng-
ing out-of-domain scenarios with unseen objects and distractors.

Notably, Interleave-VLA exhibits a remarkable emergent capability: it enables users to flexibly
specify instructions in a completely zero-shot manner, without requiring any additional finetuning
on unseen input modalities. Table 3 demonstrates the examples of image instruction types and their
corresponding high performance. Instructions can be in diverse formats, including: (1) Cropped
Image Instructions: Users can directly crop a region from the screen to indicate the target object.
(2) Internet Image Instructions: Users may supply any image—such as a photo retrieved from the
Internet—to represent the desired object. (3) Hand-Drawn Sketch Instructions: Users can draw
sketches or cartoons about the objects.

The interleaved instruction format naturally accommodates these diverse inputs, thereby enhancing
the intuitiveness of human-robot interaction and removing the need to explicitly name, categorize
or describe objects with precise texts. The strong performance gains in both in-domain and out-
of-domain tasks underscore the importance of interleaved image-text instructions for building more
adaptable and practical robotic systems.



Table 3: Interleave-VLA unlocks powerful zero-shot generalization to diverse instruction modali-
ties, including hand-drawn sketches, user-cropped images, and Internet photos, without ever seeing
them in training dataset. The consistently high accuracy demonstrates that Interleave-VLA can
robustly interpret and execute visually grounded instructions, showing strong potential for flexible
and practical human-robot interaction.

Task Prompt A A Succ. (%) A Acc. (%) PromptB B Succ. (%) B Acc. (%)

D 58.3 90.0 ? 48.8 86.0
<3 A 75.8 100 /3 58.8 100
2 71.7 100 80.8 100
./ @ 70.0 96.0 | 733 100
B Yot 69.6 100 D 76.3 100
= - O

- a2 75.5 100 - 71.7 100

4.4.2 Interleave-VLA Training: Importance of Interleave Diversity

Interleave-VLA achieves stronger generalization than text-input VLA models thanks to in-context
learning from interleaved image-text instructions, as reflected by our experimental results in both
simulation (Section 4.2) and real world (Section 4.3). This superior performance is primarily driven
by two factors during training: (1) training dataset scale and diversity (2) prompt image diversity.

Both the scale and diversity of the training Table 4: Ablation study on prompt image diver-
dataset are critical for strong Interleave-VLA sity for Interleave 7y on SIMPLER. “In-Domain”
performance, particularly in out-of-domain reports the average performance on SIMPLER Vi-
generalization. When the collected dataset is sual Matching; “Out-of-Domain” averages results
limited (e.g., real-robot experiments; see Ta- on one unseen instruction from Table 3 and one
ble 2), pretraining on a large-scale dataset is unseen object from Figure 3 (left). Combining
essential—Interleave-VLA without such pre- both task-specific and Internet images as prompts
training exhibit significantly worse perfor- achieves the best overall performance.

mance. When the finetuning dataset is large

. - Prompt Type In-Domain  QOut-of-Domain
and diverse (e.g., SIMPLER; see Table 9 in
. . . Internet Only 59.2 69.1
Appendix C) where further improvement is Task-specific Only 67.5 67.1
expected to be more challenging, incorporat- Mixed 71.0 71.7

ing cross-embodiment data can still further im-

prove out-of-domain semantic generalization. It suggests that cross-embodiment co-training benefits
Interleave-VLA, aligning with results from Open X-Embodiment. Overall, our results underscore
the importance of the curated large-scale Open Interleaved X-Embodiment Dataset in fostering ro-
bust and generalizable Interleave-VLA under varying data scales.

For prompt image diversity, Table 4 demonstrates that combining Internet images with task-
specific images cropped from robot observations yields the best overall performance. Using only
Internet images leads to lower in-domain accuracy due to limited task relevance, while relying solely
on cropped images improves in-domain results but lacks diversity. Mixing both sources provides
complementary advantages, resulting in enhanced accuracy and stronger generalization.

5 Conclusion

Text-only instructions in most robotic policies can be insufficient for unseen scenarios. To this end,
we propose Interleave-VLA, a simple and effective paradigm for adapting existing VLA models to
process interleaved image-text instructions. To overcome the lack of real-world interleaved datasets,
we develop an automatic pipeline that generates a large-scale dataset with 210k episodes and 13
million frames from Open X-Embodiment. With minimal modifications to current VLA models,
Interleave-VLA achieves 2x improvement in generalization across both simulation and real-world
experiments. Furthermore, our approach demonstrates strong emergent zero-shot generalization to
diverse user instructions never seen during training—including hand-drawn sketches, cropped im-
ages, and Internet photos—making it both practical and flexible for real-world robotic applications.
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Appendix

A Interleave-VLA Implementation Details

We extend two state-of-the-art VLA models, my [13] and OpenVLA [11], to develop Interleave-
VLA. While VLA models encompass a wide range of architectures [14, 18, 51, 52, 53, 17, 10, 49,
15], we focus on those based on VLM backbones due to their inherent ability to process image-text
pairs. However, our approach is not restricted to VLM-based methods and can be extended to other
sequence modeling approaches for action prediction [15, 49, 52, 17]. The key modification involves
interleaving image and text embeddings within the input sequence. Investigating the feasibility of
this modification for other sequence modeling VLAs is an exciting direction for future research. In
this work, we focus on and provide adaptations of Interleave-VLA from 7y and OpenVLA in the
following sections in more detail.
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Figure 6: Comparison of Interleave-VLA and Vanilla VLA architectures. Interleave-VLA is model-
agnostic and requires minimal modifications to existing VLA architectures. The only change is the
input format, which allows for interleaved image-text instructions.

A.1 Interleave-VLA from m

We make minimal architectural changes to the 7y [13] model: only the input processor. Specifically,
to enable interleaved image-text instructions, we extend its tokenizer vocabulary by introducing
special tokens <BOI> (beginning of image) and <EOI> (end of image). These newly added tokens
are used to delineate image embeddings within the instruction sequence. Specifically, the input
tokens are constructed as follows:

<BOI> <image>; ... <image>256 <EO0I> <text> <BOI> <image>257 ... <image>5i12 <EOI> <text>
<BOI> <image>s513 ... <image>7¢s <EOI> <text> ...

Here, each <image> token represents a patch embedding from the visual encoder, and the <BOI> and
<EODI> tokens mark the boundaries of each interleaved image segment. This design allows the model
to flexibly process multimodal instructions by alternating between image and text tokens within a
unified sequence.

Our Interleave-VLA approach is both effective and model-agnostic, requiring only minimal modi-
fications. Its effectiveness is evidenced by substantial improvements in generalization performance
over 7, achieving 2—-3 x gains as shown in Table 1 and Table 2. Interleave-VLA is model-agnostic,
seamlessly integrating into existing VLA models without requiring assumptions about the VLM. In
Interleave-VLA based on 7y, the VLM backbone Paligemma [32] demonstrates compatibility de-
spite not being pre-trained on Internet-scale interleaved image-text data. Moreover, our approach
introduces only minimal modifications, with no architectural changes needed for the underlying
VLM backbone. These facts highlight the practicality and broad applicability of Interleave-VLA for
advancing multimodal robot learning.

A.2 Interleave-VLA from OpenVLA

While architectural changes are not required to the VLM backbone—as demonstrated in our adap-
tation from mo—we further investigate whether modifying the backbone architecture affects its ef-
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fectiveness. Specifically, we replace OpenVLA’s original Prismatic VLM [31] backbone with In-
ternVL2.5 [25], which inherently supports the interleaved image-text format. As shown in Figure 5,
our Interleave-VLA adaptation based on OpenVLA continues to function effectively, achieving more
than double the performance of the original OpenVLA. This result further highlights the model-
agnostic nature of Interleave-VLA and its compatibility with diverse VLA architectures.

B Evaluation Details

B.1 Evaluation on SIMPLER
B.1.1 SIMPLER Evaluation Tasks

Our evaluation on SIMPLER [47] includes both In-Domain and Out-of-Domain tasks. The In-
Domain tasks follow the original SIMPLER WidowX BridgeData V2 Visual Matching setup. Since
SIMPLER tasks use text-based instructions, we adapt them into interleaved image-text instructions
using the method described in Section 3.3, based on the first frame of the rollout before the robot
arm begins moving.

In the WidowX BridgeData V2 setup, SIMPLER does not support generalization tasks (referred to
as the Variant Aggregation setup). To overcome this limitation, we introduce a set of challenging
Out-of-Domain tasks inspired by the Open Vocabulary manipulation evaluations [48]. Unlike prior
methods that rely on separate VLMs to detect target objects in the scene and inject this information
into the robot policy, our Interleave-VLA directly leverages interleaved image-text instruction to
perform these tasks without requiring additional modules. These tasks are deliberately designed to
be more challenging than the original SIMPLER tasks, requiring the robot to generalize to novel
objects and environments unseen during training on BridgeData V2 [42].

We describe the 13 tasks (4 In-Domain and 9 Out-of-Domain, as illustrated on the left of Figure 3)
used in the SIMPLER evaluation. The Out-of-Domain tasks are introduced in the order they appear
from top left to bottom right, in Figure 3.

1. widowx spoon on towel (In-Domain): This task is part of the original SIMPLER Visual
Matching setting and is included in the BridgeData V2.

2. widowx carrot on plate (In-Domain): Also from the original SIMPLER Visual Matching
setting, this scenario is present in the training data.

3. widowx stack cube (In-Domain): This stacking task is included in the original SIMPLER
Visual Matching setting and present in the training data.

4. widowx put eggplant in basket (In-Domain): This task is part of the original SIMPLER
Visual Matching setting and is present in the training data.

5. widowx spoon on towel, unseen environment (Out-of-Domain, Visual Generalization):
The environment overlay is sourced from the RT-1 Dataset [17] and is not seen during
Bridge V2 training. The robot must generalize to a novel environment.

6. widowx spoon on towel, unseen tablecloth (Out-of-Domain, Visual Generalization): The
tablecloth overlay is a random image from the internet, unseen in Bridge V2 training data,
requiring the robot to generalize to new visual backgrounds.

7. widowx spoon on towel, unseen lighting (Out-of-Domain, Visual Generalization): The
scene lighting changes dynamically with different colors (RGB) at 5SHz. The robot must
generalize to novel and rapidly changing lighting conditions.

8. widowx redbull on plate (Out-of-Domain, Semantic Generalization): This is an unseen
object from a known category. While similar cans (e.g., tomato can) appear in training, the
Redbull can is new. The robot must use language grounding to identify and manipulate the
correct object among distractors (e.g., a Coca-Cola can).
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9. widowx tennis ball in basket (Out-of-Domain, Semantic Generalization): This is an un-
seen object from a known category. While similar balls (e.g., white ball, blue ball) appear
in training, the tennis ball is new. The robot must use language grounding to select and
manipulate the correct object among distractors (an orange and a ping pong ball).

10. widowx zucchini on plate (Out-of-Domain, Semantic Generalization): This task involves
an unseen object from a known category. While a similar zucchini appears only once among
40,000 training episodes, this specific zucchini is entirely novel. The robot must leverage
language grounding to accurately identify and manipulate the correct object, distinguishing
it from distractors such as a carrot.

11. widowx toy dinosaur on towel (Out-of-Domain, Semantic Generalization): This is a com-
pletely unseen category. The robot must use language grounding to identify and manipulate
the correct object among distractors (a toy elephant).

12. widowx tape measure in basket (Out-of-Domain, Semantic Generalization): This is a
completely unseen category. The robot must use language grounding to identify and ma-
nipulate the correct object among distractors (a purple eggplant).

13. widowx stapler on paper pile (Out-of-Domain, Semantic Generalization): This task in-
volves a completely unseen category for both the object and the destination. The robot
must leverage language grounding to accurately identify and manipulate the correct object
(a stapler) among distractors (e.g., a spatula) and place it onto the unseen destination, the
paper pile.

B.1.2 SIMPLER Baselines

Our experiment in Table 1 compares Interleave-VLA (adapted from () with 7o [13], RT-1-X [17],
and Octo-Base [49]. RT-1-X and Octo models are evaluated using their official checkpoints and
code, following the evaluation protocol in the SIMPLER [47] repository. For 7y, we use the reim-
plementation from the GitHub repository [50], which is specifically trained on BridgeData V2 [42]
and supports direct evaluation on SIMPLER. Interleave-VLA is built upon this reimplemented g
codebase, with modifications to the input tokens and training on the interleaved BridgeData V2,
using the interleaved dataset construction pipeline described in Section 3.3. To further highlight the
benefits of large-scale, diverse, cross-embodiment data, we also co-train Interleave-VLA with our
curated Open Interleaved X-Embodiment Dataset, as detailed in Section 3.3.

Both Interleave-VLA (including the co-trained variant) and 79 models were trained with a learning
rate of 5e-5, a global batch size of 1024, for approximately 30 epochs. The model input consists of a
single observation image (no history), interleaved image-text instruction tokens, one proprioceptive
token (no history), and four action tokens. Training takes roughly 2 days on 4xH100 GPUs with a
per device batch size of 16. Actions and proprioception across the diverse datasets are normalized to
the 7D format: xyz position, Euler orientation, and gripper state, with all values scaled to the range
[—1,1].

The results presented in Table 1 reflect the best performance across checkpoints. Notably, perfor-
mance can vary significantly between checkpoints, even among those that appear mostly converged.
This variability is particularly pronounced for challenging tasks requiring precise manipulation, such
as "widowx stack cube”. These observations align with findings reported in the 7y reimplementation
GitHub repository [50].

B.1.3 SIMPLER Evaluation Results

Table 5 provides detailed generalization results for the top-performing models: g, Interleave-VLA
(adapted from mg), and Interleave-VLA co-trained, as reported in Table 1. Interleave-VLA consis-
tently surpasses 7 across all Out-of-Domain generalization tasks, demonstrating the effectiveness
of multimodal learning from interleaved image-text data for both visual and semantic generaliza-
tion. The co-trained Interleave-VLA model achieves further improvements, especially on semantic
generalization tasks such as “RedBull on Plate,” where similar RedBull cans are present in the RT-1
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dataset for the Google robot. This highlights positive cross-embodiment task transfer to the Wid-
owX robot. Overall, these results show that training with large-scale, diverse robot data enhances
model generalization to novel tasks and robot embodiments, supporting our approach of curating the
Open Interleaved X-Embodiment Dataset.

Table 5: Detailed evaluation results on 9 Out-of-Domain generalization tasks based on SIMPLER.
Success rates (%) are reported for 7, Interleave-VLA (adapted from ), and Interleave-VLA co-
trained with our Open Interleaved X-Embodiment Dataset, covering both visual and semantic gener-
alization. Generalization results confirm that Interleave-VLA outperforms 7 across all tasks, with
further cross-embodiment improvements from co-training.

Visual Generalization Semantic Generalization
Model Unseen Unseen Unseen | Redbull Tennis Ball Zucchini Toy Dinosaur Tape Measure Stapler on Average
Tablecloth Environment Lighting | on Plate  in Basket on Plate on Towel in Basket Paper Pile g
o 78.0 77.0 59.2 0.0 30.0 50.0 24.0 1.0 38.0 39.7
Interleave-VLA 80.0 79.0 61.3 35.0 73.0 83.0 39.0 53.0 70.0 63.4
Interleave-VLA co-trained 74.6 - 63.3 825 48.0 82.1 383 64.0 70.0 66.5

Note that the Unseen Environment setting is omitted for the Interleave-VLA co-trained model be-
cause the scene overlay is sourced from the RT-1 Google Robot dataset, which is included in the
co-train data. As a result, the model tends to generate actions intended for the Google Robot. Dur-
ing evaluation, however, the robot used is WidowX, leading to a mismatch in embodiment and
causing the model to produce incorrect actions.

B.2 Evaluation on VIMA-Bench
B.2.1 VIMA-Bench Evaluation Tasks

We evaluate performance on the majority of VIMA-Bench tasks, but excluding those requiring his-
torical memory. Memory-dependent tasks are omitted because Interleave-VLA, like common VLA
models [11, 12, 17, 10, 13, 18, 27, 28], is designed for memory-independent, first-order Markov set-
tings. In general, common VLA models characterize the conditional distribution p(A;|o;), where
A; = [a, a1, ..., 8. 1] represents a sequence of future actions, and o; denotes the current ob-
servation (comprising multiple RGB images, a language command, and the robot’s proprioceptive
state). Extending VLAs to handle historical memory in interleaved instruction scenarios remains an
interesting direction for future work.

VIMA-Bench employs interleaved image-text instructions for task specification. To evaluate text-
instructed VLA models, we transform these interleaved instructions into text-only instructions by
utilizing the shape and texture names provided in the VIMA-Bench codebase. For example:

VIMA-Bench Inmstruction: Put the W into the [].
Transformed Instruction: Put the rainbow triangle into the blue square.

B.2.2 VIMA-Bench Baselines

We evaluate Interleave-VLA (adapted from OpenVLA) against several baselines: OpenVLA [11],
VIMA-Gato [16], VIMA-Flamingo [16], and VIMA-GPT [16]. All models are trained on the same
dataset generated using an oracle model, which has access to the exact 2D poses of all objects in
the scene. This dataset generation process is provided by VIMA. For OpenVLA, the training data
consists of text-instructed samples. Both Interleave-VLA and OpenVLA are trained on an equivalent
amount of the generated VIMA dataset using the following training hyperparameters: a constant
learning rate of 2e-5 and a global batch size of 128. This comparison demonstrates the effectiveness
of Interleave-VLA in improving generalization performance over existing VLA models. The results
for VIMA-Gato, VIMA-Flamingo, and VIMA-GPT are taken from the original VIMA paper [16]
and serve as additional benchmarks. These models, adapted by the VIMA team, serve as benchmarks
to assess the progression of VLA models from earlier architectures like Gato, Flamingo, and GPT
to the more advanced OpenVLA.
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B.2.3 VIMA-Bench Evaluation Results

The detailed results for the memory-independent VIMA-Bench tasks are presented in Table 6. The
results demonstrate that Interleave-VLA benefits significantly from interleaved image-text instruc-
tions, which enhance its ability to identify and manipulate the correct object by 2x. This approach
proves more effective than relying solely on text descriptions to distinguish objects with the desired
texture and shape among distractors.

Table 6: Detailed VIMA-Bench results for L1, L2, and L3 level generalization evaluations.
Interleave-VLA generally outperforms other VLA models and improves the generalization capacity
of OpenVLA [11] by over 2x.

VIMA-Bench L1

Model Name | taskl task2 task3 task4 task7 taskll taskl5 | AVG
OpenVLA [11] 83 70 78 4 92 0 49 53.71
Interleave-VLA 87 82 81 54 82 100 96 83.14
VIMA-Gato 79 68 91 57 74 61 83 73.29
VIMA-Flamingo 56 58 63 48 62 66 40 56.14
VIMA-GPT 62 57 41 55 54 77 41 55.29
VIMA-Bench L2
OpenVLA [11] 18 20 68 2 31 0 22 23.00
Interleave-VLA 36 32 75 44 26 100 94 58.14
VIMA-Gato 56.5 535 88 55.5 53 63 81.5 64.43
VIMA-Flamingo 51 52.5 61.5 495 555 82 42 56.29
VIMA-GPT 52 52 49.5 54.5 51 76.5 43 54.07
VIMA-Bench L3
OpenVLA [11] 27 36 61 3 26 0 14 23.86
Interleave-VLA 52 55 81 53 46 98 63 64.00
VIMA-Gato [16] 51 58 84.5 56.5 49 65 52 59.43
VIMA-Flamingo [16] 49 50 66.5 47 50 66 30.5 51.29
VIMA-GPT [16] 52 51 55 49.5  50.5 82 37 53.86

B.3 Evaluation on real robot
B.3.1 Real robot Evaluation Tasks

We evaluate on two distinct manipulation tasks: Lift and Pick&Place, corresponding to the first and
second rows of results shown in Table 2. Visual illustrations of these tasks are shown on the right
side of Figure 3. The tasks are designed to be challenging, requiring the robot to generalize to novel
objects not seen during training. We describe these tasks in more detail.

The Lift task includes:
1. Lift pepper (In-Domain): 20 demonstrations collected with varied object arrangements
and positions.

2. Lift cup (In-Domain): 20 demonstrations collected with varied object arrangements and
positions.

3. Lift corn (In-Domain): 20 demonstrations collected with varied object arrangements and
positions.

4. Lift lemon (Out-of-Domain, Semantic Generalization): The target is an unseen object, as
lemons are not included in the collected demonstrations. Although the lemon category
appears in the pretraining data, it appears with different textures, robots, and environ-
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ments. VLA models must utilize language grounding to accurately identify and lift the
target lemon among two distractor items.

5. Lift bean (Out-of-Domain, Semantic Generalization): The target belongs to a completely
unseen category, as beans are absent from both the collected demonstrations and the pre-
training dataset. VLA models must rely on language grounding to correctly identify and
lift the target bean among two distractor items.

6. Lift spoon (Out-of-Domain, Semantic Generalization): The target is an unseen object from
a known category, as the demonstrations do not include this specific spoon. While the spoon
category appears in the pretraining data, it is represented with different textures, robots, and
environments. VLA models must leverage language grounding to accurately identify and
lift the target spoon among two distractor items.

The Pick&Place task includes:

1. Pick up Kitchen cutter and place into the pot (In-Domain): 20 demonstrations collected
with varied object arrangements and positions.

2. Pick up ladle and place into the pot (In-Domain): 20 demonstrations collected with varied
object arrangements and positions.

3. Pick up pasta server and place into the pot (In-Domain): 20 demonstrations collected
with varied object arrangements and positions.

4. Pick up the white and blue spatula and place it into the pot (Out-of-Domain, Semantic
Generalization): The target is an unseen object from a known category. The demonstrations
do not include any spatula. While the spatula category appears in the pretraining data,
it is shown with different textures, robots, and environments. VLA models must utilize
language grounding to accurately identify and manipulate the target spatula among two
distractor kitchenware items.

5. Pick up the black and white spatula and place it into the pot (Out-of-Domain, Semantic
Generalization): Similar to the previous task, but the target spatula is black and white. The
robot must leverage language grounding to correctly identify and manipulate the target
spatula among two distractor kitchenware items.

B.3.2 Real robot Baselines

We compare Interleave-VLA (adapted from () with pretraining against the following baselines:
7o with pretraining and Interleave-VLA without pretraining. The pretraining dataset is a subset of
our curated Open Interleaved X-Embodiment Dataset, as described in Section 3.3. Interleave-VLA
w/ PT is pretrained on this dataset and subsequently fine-tuned on the collected demonstrations
from the FANUC robot arm before evaluation. For 7y w/ PT, the same pretraining and fine-tuning
protocol is applied, except the dataset is not interleaved. This setup allows for a direct comparison to
evaluate the benefits of interleaved image-text instructions for generalization. The Interleave-VLA
w/o PT is trained exclusively on the collected FANUC demonstrations, without exposure to the
Open Interleaved X-Embodiment Dataset, enabling us to assess the impact of large-scale, diverse
pretraining on performance. All models are fine-tuned with a learning rate of 5e-5, a global batch
size of 128, and evaluated across several checkpoints to mitigate the performance variability noted
in Appendix B.1.2.

B.3.3 Real robot Evaluation Results

Tables 7 and 8 present the detailed evaluation results for the Lift and Pick&Place tasks, respec-
tively. Interleave-VLA, adapted from 7, is compared against 7y and Interleave-VLA without pre-
training (w/o PT). In generalization tasks, Interleave-VLA consistently outperforms 7 in semantic
generalization by 2, highlighting the effectiveness of multimodal learning from interleaved image-
text data. The results further demonstrate that pretraining on the Open Interleaved X-Embodiment
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Dataset significantly enhances performance across all tasks. For small-scale datasets (60 demonstra-
tions in total per task), pretraining on the Open Interleaved X-Embodiment Dataset proves essential
for achieving strong performance, as cross-embodiment pretraining enables the model to learn more
robust representations and generalize effectively, even to the FANUC robot, which is not included
in the pretraining data.

Table 7: Detailed evaluation of the “Lift task”. We conduct 12 trials for each object and report
both the number of successful trials (# Succ) and the number of trials where the correct object is
manipulated (# Acc).

Cateeo Task # Trials Interleave-VLA w/ PT  Interleave-VLA w/o PT w9 w/ PT
gory i ] # Succ / # Acc # Succ / # Acc # Succ / # Acc
In-Domain pepper 12 712 2/4 7110
In-Domain corn 12 9/12 0/4 4/12
In-Domain cup 12 8/12 0/4 3/12
Out-of-Domain  spoon 12 9/11 0/2 9/11
Out-of-Domain  bean 12 9/12 0/4 171
Out-of-Domain  lemon 12 8/12 0/4 2/5
Mean Success / Accuracy Rate 69.4 % / 98.6 % 2.8%130.6 % 36.1 % /70.8 %

Table 8: Detailed evaluation on "Pick&Place task”. We conduct 12 trials for each object and report
both the number of successful trials (# Succ) and the number of trials where the correct object is
manipulated (# Acc).

Cat Task # Trial Interleave-VLA w/ PT  Interleave-VLA w/o PT mo w/ PT
ategory as nais # Succ / # Acc # Succ / # Acc # Succ / # Acc
In-Domain pasta server 12 6/8 4/8 7/10
In-Domain spoon 12 7/10 177 719
In-Domain knife 12 4/7 2/7 4/12
Out-of-Domain  spatula 12 3/8 0/8 11
Out-of-Domain  black spatula 12 6/8 0/6 4/5

Mean Success / Accuracy Rate 43.3 %/ 68.3 % 11.7 % /1 60 % 383%1/61.7 %

C Scalability of Interleave-VLA with the Open Interleaved X-Embodiment
Dataset

The Open Interleaved X-Embodiment Dataset, detailed in Section 3.3, empowers Interleave-VLA to
scale efficiently with increasing data. This section demonstrates the scalability of Interleave-VLA
through pretraining and co-training strategies in varying data regimes.

Pretraining for Low-Data Regimes: As shown in Table 2, pretraining on the curated Open In-
terleaved X-Embodiment Dataset is essential for achieving strong performance on real robot tasks.
This is particularly important due to the limited size of the FANUC dataset, which contains only 60
demonstrations per task. Pretraining on the significantly larger and more diverse Open Interleaved
X-Embodiment Dataset enables Interleave-VLA to learn robust representations that generalize ef-
fectively to the FANUC robot, even though it is not included in the pretraining data.

Co-Training for High-Data Regimes: Co-training with additional datasets from the Open In-
terleaved X-Embodiment Dataset further enhances performance in semantic generalization tasks.
While the Bridge Dataset V2 is already extensive and diverse, making substantial improvements
challenging, co-training yields additional gains in semantic generalization. This demonstrates that
interleaved training facilitates cross-embodiment skill transfer. Detailed results are presented in
Table 9.

D Task Flexibility and Emergent Generalization Details
To highlight the task flexibility and emergent generalization capabilities of Interleave-VLA when

faced with unseen instructions, we leverage the interleaved image-text interface to evaluate its per-
formance across diverse user input styles during deployment. The Interleave-VLA model used in
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Table 9: Scalability of Interleave-VLA through co-training on the Open Interleaved X-Embodiment
Dataset, evaluated under the SimplerEnv Out-of-Domain setting. Incorporating datasets beyond
Bridge Data V2 in the Open Interleaved X-Embodiment Dataset further improves performance in
semantic generalization tasks. The bold and underlined values represent the highest and second-
highest scores, respectively.

Model Name Visual Semantic L1 Semantic L2 Avg.
Interleave-VLA 73.4 63.7 53.0 63.4
Interleave-VLA co-trained 71.5 70.7 57.3 66.5

this evaluation is directly taken from the SIMPLER evaluation suite (Table 1 and Table 5) without
any additional fine-tuning. A summary of Interleave-VLA’s performance statistics is presented in
Table 3.

Below, we describe the three tasks and their corresponding prompts in the order they appear in
Table 3:

1. Place {eggplant, carrot} on the plate. Two types of instructions are provided. The first
row includes a hand-drawn sketch of an eggplant and a carrot, created by a human on-the-
fly. The second row features a sketch-style image of an eggplant and a carrot sourced from
the Internet.

2. Place {green, yellow} block on the towel. Two types of instructions are included. The
first row contains a hand-drawn sketch of a green and yellow block, created by a human
on-the-fly. The second row features random images representing a green and yellow block,
sourced from the Internet.

3. Place {block, spoon} on the towel. Two types of instructions are used. The first row
includes a hand-drawn sketch of a block and a spoon, created by a human on-the-fly. The
second row features cropped images of the desired target objects, captured from a screen
by a human on-the-fly.

Interleave-VLA demonstrates remarkable emergent generalization capabilities, even when faced
with diverse instruction styles such as Internet images, object crops (from a familiar input style but
with unseen images), and sketches (a completely novel input style not encountered during training).
These emergent capabilities go beyond the typical generalization to novel objects and environments
evaluated in prior VLA models [13, 11]. They highlight Interleave-VLA’s adaptability to new tasks
and instruction formats, showcasing its practical flexibility in processing diverse multimodal inputs.

E Open Interleaved X-Embodiment Dataset Details

The Open Interleaved X-Embodiment Dataset, curated as described in Section 3.3 for training
Interleave-VLA, integrates data from 11 sources within the Open X-Embodiment Dataset. To en-
sure coherent training and facilitate cross-embodiment transfer, the action space across all datasets
is standardized to a unified 7D pose format: xyz position, Euler orientation, and gripper state. This
normalization adheres to practices established in recent VLA research [11, 13, 49]. Our dataset
features an extensive variety of over 3500 diverse object categories, as depicted on the left of Fig-
ure 2. Additionally, Figure 7 highlights the wide range of skills encompassed within the dataset and
provides a detailed breakdown of its composition and partitioning.
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o J“- Interleaved X-Embodiment Dataset Composition
o RT-1 [17] 41.01%
Bridge [42] 28.25%
o BC-Z [45] 20.34%
Language Table [46] 7.81%
o UTAustin Mutex [35] 0.71%
Jaco Play [43] 0.51%
. Berkeley Autolab URS [38] 0.47%
IAMLab CMU Pickup Insert [39] 0.30%
Stanford Hydra [40] 0.27%
* UTAustin Sirius [41] 0.26%
UCSD Kitchen [44] 0.07%

Figure 7: Left: Our Open Interleaved X-Embodiment Dataset is diverse in skills. Right: Composi-
tion of open data sources in our curated Open Interleaved X-Embodiment Dataset.
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