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Abstract: Generalist robot policies require strong spatial priors to operate reliably
across diverse environments, enabling them to perceive, reason, and act within 3D
space from multiple perspectives. Vision-language models (VLMs) are promis-
ing backbones for such policies but are limited by training on generic web-scale
image–text datasets that lack rich, multi-frame spatial cues for manipulation. One
example is reference frame comprehension—deciding whether to reason in ego-
centric, world-centric, or object-centric coordinates—which is critical for precise,
context-aware actions. We introduce ROBOSPATIAL, a large-scale dataset built
from real indoor and tabletop 3D scans paired with egocentric RGB views, con-
taining 1M images, 5k scans, and 3M annotated spatial relations spanning object–
object, object–space, and object–compatibility reasoning. Its 2D/3D-ready design
supports learning priors that generalize across viewpoints, scales, and task con-
texts. Models trained on ROBOSPATIAL achieve significant gains in spatial rea-
soning benchmarks and robot manipulation, demonstrating how targeted spatial
priors enhance the generalization and reliability of robot policies.
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Figure 1: ROBOSPATIAL dataset facilitates 3D spatial reasoning for robot manipulation, enabling
human-aligned reasoning in the correct reference frame for grounding, planning, and detection.

1 Introduction

The rise of vision-language models (VLMs) has created new opportunities for agents to interpret
and act on the visual world using natural language, with applications in robotics and augmented
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Dataset 3D scans Embodied Ref. frames Compatibility Domain #Scans #Images #Spatial QAs

EmbSpatial-Bench [21] ✓ ✓ ✗ ✗ Indoor 277 2k 4k
Visual Spatial [22] ✗ ✗ ✓ ✗ MSCOCO 0 10k 10k

SpatialRGPT-Bench [18] ✗ ✗ ✗ ✓ Indoor, AV 0 1.4k 1.4k
BLINK-Spatial [23] ✗ ✗ ✓ ✗ Generic 0 286 286

What’s up [14] ✗ ✗ ✗ ✗ Generic 0 5k 10k
Spatial-MM [15] ✗ ✗ ✓ ✗ Generic 0 2.3k 2.3k

ROBOSPATIAL ✓ ✓ ✓ ✓ Indoor, tabletop 5k 1M 3M

Table 1: Comparison with other spatial reasoning datasets that include object-centric spatial rela-
tionships.

reality (AR). In robotics, VLMs enable grounded scene understanding [1, 2], manipulation [3], and
policy code generation [4, 5]; in AR, they support object labeling [6], action recognition [7, 8], and
temporal grounding [9].

Despite these advances, VLMs [10, 11, 12] still fall short in spatial understanding [13, 14, 15, 16].
They struggle with nuanced object relationships, e.g. not just recognizing a “bowl on the table”
but reasoning where it should be placed for accessibility or fit. Furthermore, current datasets rarely
capture reference frame understanding—how spatial relations shift with first-person, object-centric,
or scene-level perspectives—critical for real-world interaction.

Recent works target spatial reasoning but fall short in embodied settings. SpatialVLM [17] and
SpatialRGPT [18] train on web images with perception-generated annotations, limiting generaliza-
tion to robot-captured views that lack absolute scale cues. Pointing models like RoboPoint [19] and
Molmo [20] predict 2D coordinates for objects or free space but often ignore object-centric refer-
ence frames or real-world placement constraints (e.g. whether the gray bowl in Fig. 1 fits in front of
the car).

We hypothesize that the key bottleneck is the lack of suitable training data for robotics (Table 1).
To address this, we introduce ROBOSPATIAL, a dataset for training VLMs in spatial reasoning for
robot applications. Using existing indoor scene and tabletop RGBD datasets, we generate targeted
QA pairs in three categories: Spatial context — predict points in free space for placing objects (e.g.
“Where on the table can I put the plate?”); Spatial compatibility — binary check if a location fits an
object; Spatial configuration — binary check if a spatial relation holds (e.g. “Is the mug to the left
of the laptop?”). Each QA is posed from three reference frames: (a) ego-centric, (b) world-centric,
and (c) object-centric, enabling flexible interpretation of spatial instructions. Applied to existing 3D
datasets, this yields 1M images, 5k scans, and 3M spatial relations, with paired 2D egocentric and
3D data for both 2D and 3D readiness.

We evaluate ROBOSPATIAL on SOTA 2D and 3D VLMs. Models trained on it outperform baselines
on ROBOSPATIAL-Home (a manually collected indoor dataset), BLINK-Spatial [23], and Spatial-
Bot [24]. These benchmarks test real-world skills like object rearrangement and spatial QA, showing
consistent gains across tasks. Using ROBOSPATIAL, we also compare 2D vs. 3D VLMs; while 3D
shows promise, differing pretraining setups prevent a definitive conclusion.

Our contributions:

• ROBOSPATIAL — a spatial reasoning dataset with images, 3D scans, and spatial QAs, plus
ROBOSPATIAL-Home for evaluation.

• Training on ROBOSPATIAL yields superior spatial reasoning, surpassing SOTA baselines
in robot manipulation and indoor QA.

• Comprehensive evaluation of SOTA 2D & 3D VLMs on spatial reasoning tasks in real-
world contexts.

2 Related Work

VLMs for Robotics. Vision-language models (VLMs) are increasingly central to robotics, com-
bining visual perception and language understanding for intuitive human-robot interaction and au-
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tonomous decision-making. Recent advances include vision-language-action models (VLAs) [25,
26, 27] that translate instructions into executable actions, GPT-4v [10] for high-level task plan-
ning [28], and VLM-based approaches for keypoint/mask prediction [29, 30, 31], error anal-
ysis [32, 33], and grasp pose prediction [34]. However, integrating VLMs [24, 18, 19] into
robotic systems remains challenging, particularly for precise spatial reasoning in dynamic envi-
ronments [13, 35, 36]. ROBOSPATIAL addresses this gap by providing large-scale pretraining and
evaluation resources tailored for spatial reasoning in robotics.

Spatial Understanding with VLMs. Spatial understanding has long been studied in vision and
QA tasks [23, 37, 38, 39, 40, 41, 42, 43], yet existing benchmarks have limitations: some focus
on simulations [44] or generic imagery [22, 45, 18, 17, 23, 14, 15, 46], others are difficult to eval-
uate with free-form outputs [44, 21, 47], rely on full 3D scans [48, 49, 50, 47], or omit reference
frames [48, 49, 50, 47, 17, 18, 23, 46]. Few target robotics-relevant relationships such as spatial
compatibility or context [21, 23, 51, 15, 14, 47, 46].

Building on prior spatial reasoning work [22, 14], which examined reference frames and configura-
tions in generic images [52, 43], we extend to robotics-specific, actionable relationships. We present
a large-scale, 2D/3D-ready dataset generated via an automated pipeline, and demonstrate its use in
training VLMs for both in-domain and out-of-domain spatial reasoning. Our goal is to lower the
barrier for exploring spatial understanding directly applicable to robotic workflows such as planning
and verification.

3 Approach

We begin by explaining the selection of three spatial relationships: spatial context, spatial compati-
bility, and spatial configuration. Next, we describe the data generation pipeline used to construct the
ROBOSPATIAL. Figure 2 provides an overview of the dataset.

3.1 Spatial Relationships

The dataset is organized around three core spatial relationships that we believe address the essential
aspects of spatial reasoning for robotic tasks: spatial context, spatial compatibility, and spatial con-
figuration. Context allows robots to assess the relationship between objects and their surrounding
space, facilitating the identification of empty or occupied areas, which is relevant for downstream
applications such as path planning and obstacle avoidance. Compatibility focuses on whether ob-
jects can coexist or interact without conflict in a given space, which is vital for object placement,
assembly, and operational safety. Configuration enables robots to understand and interpret the rel-
ative positioning of objects, which is crucial for directing navigation, manipulation, and interaction
within complex environments. Together, these spatial relationships provide a more nuanced and
practical framework for robotic applications than metrics like distance—which is hard to normalize
across different scales, environments, and tasks—thereby enabling robots to perform complex tasks
with greater reliability.

3.2 Dataset Generation

Our pipeline generates a large-scale, high-accuracy spatial reasoning dataset with minimal human
intervention, using heuristics grounded in 3D geometry and 2D image views. It takes as input a
scene dataset Ds with RGB images, camera poses, and oriented 3D bounding boxes with semantic
labels, and outputs D, where each entry di = ⟨Ii, qi, ai, li⟩ contains an image, question, answer, and
reference frame li ∈ ego,world, object. Questions cover spatial configuration, context, or compat-
ibility. An auxiliary grounding dataset links object descriptions to 2D bounding boxes for reliable
reference resolution. We detail the process in two stages, separating 3D relation extraction from 2D
image-space target generation.
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Procedural
Generation

Spatial Configuration Spatial CompatibilitySpatial Context

Q. Is the bin left of the 
cabinet?
A. Yes

Q. Point to vacant space 
in front of the cabinet.
A. (603,979), (594,988)

Q. Can the bin fit in 
front of the cabinet?
A. Yes

Spatial Relationship Annotations

Diverse Reference Frames
Ego-centric World-centric Object-centric

Q. Can the cup fit left 
of the screwdriver?
A. Yes

Q. Is the soup can 
below the banana?
A. No

Q. Is the chair in front 
of the monitor?
A. Yes

3D Point Cloud

Image

3D Bounding Boxes

Figure 2: Overview of the ROBOSPATIAL dataset. We automatically generate spatial relationship
annotations from existing datasets with 3D point clouds, egocentric images, and 3D bounding box
annotations. We create question/answer pairs covering three classes of spatial relationships, three
spatial reference frames, and both binary (yes/no) and numeric (e.g., 2D image points) answers.
From 1M images and 5k scans, we generate over 3M spatial question/answer pairs.

3.2.1 Stage 1: 3D Spatial Relation Extraction

The first stage involves extracting spatial relationships between objects or between objects and free
space, based on 3D geometry. Each spatial relation is defined as si = ⟨Ii, ai, ti, ri, li⟩, where Ii is
the source image, ai is the anchor object, ti is the target object or a sampled point in free space, ri ∈
{left, right, above, below, front, behind} is the relation preposition, and li ∈ {ego,world, object}
denotes the reference frame.

We use oriented 3D bounding boxes, provided by the source dataset, to compute spatial relation-
ships. Each bounding box includes both the 3D location and heading of the object. The object’s
orientation is defined by the heading vector of the bounding box, aligned with the object’s front-
facing direction. Using this orientation, we determine the appropriate directional region (e.g., front,
left) relative to the reference frame. For instance, a relation such as “in front of (anchor object)
(object frame)” refers to the positive direction along the anchor object’s heading vector. These re-
lationships are calculated independently for each of the three reference frames: the world frame is
aligned with the dataset-level coordinate system; the ego frame is defined by the camera pose (i.e.,
camera-centered); and the object frame is defined by the local orientation of the anchor object.

The camera extrinsics are used to transform coordinates between reference frames. Although the
method does not require point clouds or meshes, it relies on camera intrinsics and extrinsics to
project between 2D and 3D and to ensure consistent reference frame reasoning. For each spatial
configuration task, we evaluate all visible object pairs that appear uniquely in the image, avoiding
duplicate instances to minimize ambiguity. The resulting relationships are binary (True/False) and
specify whether the spatial condition holds for the given object pair.

3.2.2 Stage 2: 2D Spatial Point and Region Sampling

In the second stage, we generate 2D image-space annotations for spatial context and spatial com-
patibility tasks. These rely on the 3D bounding box layout and calibrated camera parameters to map
spatial relationships into image coordinates.

For spatial context, we construct a top-down occupancy map of the scene by marking regions oc-
cupied by 3D bounding boxes. We then randomly sample 3D points in empty space that lie in a
specified directional relation to the anchor object, following the same frame-dependent heuristics as
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in the configuration task. These points are projected into the image plane using the camera intrin-
sics. To ensure the points are valid, we filter out samples that are obstructed or occluded based on
line-of-sight from the camera. Specifically, we perform raycasting from the camera center to each
sampled 3D point, and discard points whose rays intersect any occupied bounding box volumes be-
fore reaching the target location. The final answer is a list of 2D (x, y) image coordinates that satisfy
the spatial context constraint.

Spatial compatibility extends this idea by checking whether a target object can fit within the sampled
region. We simulate placing a virtual bounding box, matching the size of the target object, at the
candidate location on the ground plane. A region is considered compatible if the simulated place-
ment does not intersect with any existing bounding boxes in the scene and provides at least a 10 cm
margin along each axis. The simulation allows for translation and in-plane rotation of the object.
The answer to this task is binary (True/False), indicating whether the region can accommodate the
object.

3.2.3 Question-Answer Generation

From the extracted spatial relations si, we generate question–answer pairs di using templates of the
form:

{TARGET} {RELATION} {ANCHOR} {REF. FRAME}

where relation and frame are defined in Section 3.2.1. Templated approach avoids ambiguity and
minimizes reliance on commonsense, ensuring models learn from visual grounding.

Each relation type—context, compatibility, configuration—has its own format: configuration and
compatibility yield binary (True/False) answers, while context returns valid 2D coordinate lists. To
improve object reference resolution, we also generate an auxiliary grounding dataset linking object
descriptions to 2D bounding boxes, obtained by projecting 3D boxes with camera parameters. This
supervision is used during training (Appendix B.4).

Using this pipeline, we generate around 3 million spatial relationships and their associated question-
answer pairs. This scale is an order of magnitude larger than prior spatial reasoning datasets (see
Table 1).

4 Experiments

4.1 Implementation

Datasets. We construct ROBOSPATIAL by applying our pipeline to three indoor
scene datasets—ScanNet [55], Matterport3D [56], and 3RScan [57]—and two tabletop
datasets—HOPE [58] and GraspNet-1B [59]. 3D bounding box annotations and embodied images
are retrieved from EmbodiedScan [51], yielding 3M spatial QA pairs from 5k scans and 1M images
(Appendix 5 contains detailed splits).

Models. We evaluate RGB-only VLMs: VILA-1.5-8B [12], LLaVA-NeXT-8B [11], SpaceLLaVA-
13B [17], RoboPoint-13B [19], Molmo-7B [20], and GPT-4o [10]. Models requiring external masks
(e.g., SpatialRGPT [18]) are excluded. For 3D input, we test 3D-LLM [53] (multi-view RGB) and
LEO [54] (segmented object point clouds).

Fine-tuning. Open-source models are evaluated in both zero-shot and fine-tuned settings. Fine-
tuning uses ROBOSPATIAL plus an auxiliary grounding dataset to improve object reference resolu-
tion (Appendix D.4).

In-domain evaluation. ROBOSPATIAL-Val is a held-out split with 6k questions (2k per spatial
relation type). Binary tasks are scored by accuracy; coordinate tasks are correct if predictions fall
within the convex hull of ground-truth points (Table 6).
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Model ROBOSPATIAL-Home BLINK SpatialBench
Configuration Context Compatibility Accuracy Accuracy

2D VLMs
VILA [12] 57.8 0.0 69.0 72.7 53.0

+ROBOSPATIAL 65.9 ↑ 15.6 ↑ 78.0 ↑ 79.7 ↑ 73.6 ↑
LLaVA-NeXT [11] 68.3 0.0 70.5 71.3 55.9

+ROBOSPATIAL 78.9 ↑ 19.7 ↑ 80.1 ↑ 79.0 ↑ 70.6 ↑
SpaceLLaVA [17] 61.0 2.5 61.0 76.2 47.1

+ROBOSPATIAL 71.6 ↑ 13.1 ↑ 72.4 ↑ 81.8 ↑ 67.7 ↑
RoboPoint [19] 69.9 19.7 70.5 63.6 44.1

+ROBOSPATIAL 78.0 ↑ 31.1 ↑ 81.0 ↑ 70.6 ↑ 64.7 ↑
3D VLMs

3D-LLM [53] 39.8 0.0 35.2 N/A N/A
+ROBOSPATIAL 55.2 ↑ 8.2 ↑ 52.3 ↑ N/A N/A

LEO [54] 51.2 0.0 38.1 N/A N/A
+ROBOSPATIAL 64.2 ↑ 10.0 ↑ 57.1 ↑ N/A N/A

Not available for fine-tuning
Molmo [20] 58.6 0.1 18.1 67.1 55.9
GPT-4o [10] 77.2 5.7 58.1 76.2 70.6

Table 2: Results on an out-of-domain test split comparing prior art VLMs. The results show im-
proved (↑) spatial understanding capabilities on similar domains. Bolded number is the best result
for the column.

Cross-domain evaluation. We train on either indoor or tabletop data and test on the other to mea-
sure transfer across scene types (Table 3).

Out-of-domain evaluation. We benchmark on: (1) ROBOSPATIAL-Home — 350 manually written
questions over real RGB-D indoor scenes, (2) BLINK [23] — spatial subset only, and (3) Spatial-
Bench [24] — position category. Additional benchmark details are in Appendix B.2.

4.2 Results

We evaluate the effectiveness of ROBOSPATIAL in improving spatial reasoning capabilities in VLMs
across held-out and out-of-domain benchmarks. In this section, we focus on analyzing the model’s
generalization and understanding of spatial relationships. We address the following questions:

How well does ROBOSPATIAL training generalize to unseen spatial relationships? Although
ROBOSPATIAL consists of template-generated QA pairs with a fixed set of spatial prepositions, we
observe in table 2 that models trained on it can generalize to spatial relationships not explicitly in-
cluded in the training set. This is particularly evident in evaluations on the BLINK dataset [23],
which contains diverse prepositions such as “under,” “next to,” and “far away.” We attribute this
generalization to the fact that ROBOSPATIAL encompasses all six principal directions in 3D space
(along the x, y, and z axes). Generalizing to new prepositions often requires mapping linguistic ex-
pressions (e.g., “on top of,” “under”) to these spatial primitives—a task at which LLMs are naturally
proficient. For example, “on top of” often refer to “above” in a world-centric frame, while “under”
maps to “below.” Moreover, prepositions such as “next to” or “beside” imply proximity between
objects. Because ROBOSPATIAL includes questions that require generating points near a reference
object, it implicitly teaches the concept of closeness. This enables trained models to understand
these proximity-based relationships, even if they are not explicitly represented during training.

Do ROBOSPATIAL-trained models understand nuanced perspectives? Spatial references in nat-
ural language often imply specific reference frames. For instance, “in front of the car” typically
refers to the direction of the car’s front hood. In ROBOSPATIAL-Home, we omit explicit frame spec-
ifications in the questions to evaluate whether models can align with the implicit reference frame
intended by the questioner. We find that models trained with ROBOSPATIAL can often infer the
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Spatial ConfigurationSpatial Context Spatial  Compatibility

Q. Pinpoint 
several points 
within the 
vacant space 
situated to the 
right of the 
table.

Q. Pinpoint 
several points 
within the 
vacant space 
situated in front 
of the frame.

Q. Pinpoint 
several points 
within the 
vacant space 
situated to the 
right of the desk.

RP       RP-FT       GT

Q. Is the frame 
in front of the 
window? No

SL
RP

SL-FT
RP-FT

Q. Is the shelf in 
front of the 
bathtub? Yes

SL
RP

SL-FT
RP-FT

Q. Is the couch 
under the truck? 
No

SL
RP

SL-FT
RP-FT

Q. Can the apple 
fit in front of the 
bowl? Yes

SL
RP

SL-FT
RP-FT

Q. Can the lamp 
fit right of the 
table? Yes

SL
RP

SL-FT
RP-FT

Q. Can the lamp 
fit left of the 
bed? Yes

SL
RP

SL-FT
RP-FT

Figure 3: In-domain (ROBOSPATIAL-Val, top) and out-of-domain (ROBOSPATIAL-Home,
BLINK [23], middle and bottom) results for ROBOSPATIAL-trained models. Two models shown:
SL (SpaceLLaVA [17]) and RP (RoboPoint [19]); the -FT suffix indicates fine-tuning on ROBOSPA-
TIAL. Correct answers in green. All images except bottom-right in the out-of-domain rows are from
ROBOSPATIAL-Home.

Indoor Tabletop
↓ ↓

Tabletop Indoor
RoboPoint [19] 38.7 38.2

+ROBOSPATIAL 48.9 ↑ 51.3 ↑
LEO [54] 41.9 43.7

+ROBOSPATIAL 47.2 ↑ 54.5 ↑
Table 3: Cross-dataset generalization results be-
tween indoor and tabletop environments on RO-
BOSPATIAL-Val.

Model Success (%)
Open-source

LLaVA-NeXT [11] 23.7
+ ROBOSPATIAL 52.6 ↑

RoboPoint [19] 44.7
+ ROBOSPATIAL 46.2 ↑

Not available for fine-tuning
Molmo [20] 43.8
GPT-4o [10] 46.9
Table 4: Robot experiment results.

correct frame of reference, suggesting that they have learned to associate object geometries and
orientations with spatial language. Figure 3 shows examples such as “Is the frame in front of the
window?”, where the model accurately identifies the intended spatial relation.

Are 3D VLMs better at learning spatial relationships than 2D VLMs? The findings in table 2
suggest that 3D VLMs tend to outperform 2D counterparts in spatial reasoning tasks, likely due to
their ability to directly utilize depth information. However, this comparison is not entirely fair: mod-
els like 3D-LLM [53] and LEO [54] are pretrained on RGB-D indoor scan datasets, some of which
overlap with the environments used in the source datasets (e.g., Matterport3D, ScanNet). This gives
them prior exposure to scene geometry and object layouts, which may bias their performance. To
support more controlled and fair comparisons in the future, we designed ROBOSPATIAL to be com-
patible with both 2D and 3D modalities, allowing researchers to investigate the impact of modality,
architecture, and pretraining data under unified evaluation protocols.

4.3 Real Robot Experiments

We design a suite of tabletop manipulation tasks requiring spatial reasoning. The setup includes
a Kinova Jaco robot [61], paired with a ZED2 camera for RGB-D perception. The robot system
implements actions to pick and place objects on the table using cuRobo [60] for motion planning.
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Task: Place the object in a free space in front of the orange juice box.

Task: Place the object in a free space in front of the pony.

Figure 4: Robotics experiments: the red dot shows the model output (if not present, the model
failed to provide a valid point in the image); green dots are used to show when a model outputs
multiple points. The robot motion generator, cuRobo [60], is used to grasp the item referenced by
the generated point. The spatial- prefix indicates model trained with ROBOSPATIAL.

Tasks include spatial questions that require a yes/no answer, and pick-and-place instructions that
require successfully controlling the robot to complete the task. We adopt a modular design, where
the VLM is queried for spatial understanding, and the resulting predictions (e.g., target points) are
passed to a separate motion planning system for execution. We use a range of simple, unambiguous
objects—colored cubes, cylinders, food items, and toys—to ensure the challenge lies in spatial un-
derstanding rather than object recognition (Figure 4). In total, we conducted over 200 model queries.
Details of the questions and scene configurations are provided in the Appendix D.5. We evaluate the
following VLMs: LLaVA-NeXT [11] and RoboPoint [19], both with and without ROBOSPATIAL
training; and two strong baselines, Molmo [20] and GPT-4o [10]. Table 4 and Figure 4 present the
results.

Experiments show that LLaVA-NeXT fine-tuned on ROBOSPATIAL achieves the highest success
rate across all models. Training with ROBOSPATIAL enhances spatial understanding in 2D VLMs,
enabling the model to correctly interpret instructions such as “place in front of the pony,” where
placement is aligned with the pony’s head direction. It also demonstrates sensitivity to object scale,
as in the task “place in front of the orange juice box,” where the model places the object at a rea-
sonable distance. In contrast, baseline models such as RoboPoint frequently place objects too far
from the target, likely due to limited understanding of spatial proximity. We also observe that spa-
tial failures in 2D VLMs often stem from errors in projecting 2D predictions into 3D. Even a small
2-pixel shift in image space can translate to a 5–10 cm error in the physical world, which is signif-
icant in manipulation tasks. Nonetheless, models trained on ROBOSPATIAL produce more accurate
predictions, reducing these failure cases and showing the benefit of dataset-driven improvements.
Interestingly, GPT-4o performs comparably to ROBOSPATIAL-trained RoboPoint. We attribute this
to GPT-4o’s broader language understanding and instruction-following ability, which partially com-
pensates for its lack of task-specific spatial training. Looking forward, promising directions include
investigating how viewpoint affects 2D spatial predictions, and developing 3D VLMs that can rea-
son over partial point clouds—removing the need for complete 3D scans and making deployment in
real-world systems more feasible.

5 Conclusion

We introduce ROBOSPATIAL, and ROBOSPATIAL-Home, a large-scale 2D/3D spatial understanding
training and evaluation dataset tailored for robotics. Experimental results show that models trained
with ROBOSPATIAL are able to understand spatial relationships, generalize to unseen relationships,
and infer nuanced reference frames, making them applicable in a wide range of tasks that require
spatial understanding. We further demonstrate the real-world applicability of ROBOSPATIAL with
robot experiments. In addition, our automatic data generation pipeline can be used to extend the
dataset to new data sources and spatial relations. We show that ROBOSPATIAL has the potential to
serve as a foundation for broader applications in robotics which require spatial understanding.
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Appendices

In this supplementary material, we present additional details and clarifications that are omitted in
the main text due to space constraints.

• Appendix A Limitations.

• Appendix B Dataset Details.

• Appendix C Implementation Details.

• Appendix D More Results.

A Limitations

While ROBOSPATIAL significantly improves spatial reasoning capabilities in VLMs, certain design
choices naturally introduce trade-offs and areas for future exploration.

First, the dataset relies on a top-down occupancy map to identify and annotate empty regions for
spatial context and compatibility tasks. This approach simplifies reasoning about object placement
on horizontal surfaces and enables efficient data generation, but it currently does not support spa-
tial questions involving containment—such as whether an object can fit inside or under another
object—which would require more detailed volumetric modeling.

Second, although the models are deployed on a real robot using a modular approach, we do not
yet explore tighter forms of integration such as training it jointly with robot trajectories [25]. In-
vestigating these alternatives could enhance downstream policy learning and enable more seamless
end-to-end systems.

Finally, ROBOSPATIAL focuses on indoor and tabletop scenes containing objects commonly en-
countered in household environments, and does not include humans or animals. This reflects the
nature of source datasets and our emphasis on robot object manipulation. While this limits coverage
of social or dynamic interaction scenarios, trained models still generalizes well to out-of-distribution
benchmarks like BLINK, which include humans and animals—suggesting that the learned spatial
representations are broadly transferable.

B Dataset Details

B.1 Dataset Statistics

We provide the full dataset statistics in table 5. For all training, we use only 900,000 spatial relation-
ships, sampled equally across all datasets, due to computational constraints. We further experiment
on the effect of data scaling on table 8 and explain the results. Notably, HOPE [58] and GraspNet-
1B [59] contain similar tabletop images captured from different perspectives, resulting in lower
dataset diversity for the tabletop environment. We plan to enhance the diversity of ROBOSPATIAL
by incorporating additional tabletop datasets.

B.2 Out-of-Domain Benchmarks

ROBOSPATIAL-Home: 350 manually authored spatial questions over diverse real-world RGB-D
scenes captured with an iPhone depth sensor. Questions omit explicit frame-of-reference labels to
test implicit reasoning.

BLINK (spatial subset) [23]: Binary questions covering diverse prepositions (e.g., “under,” “next
to,” “touching”). We evaluate only the spatial subset aligned with our task formulation.

SpatialBench (position category) [24]: Tests fine-grained spatial localization and placement rea-
soning using RGB-only inputs.
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B.3 Choice of Spatial Relationships

In designing the dataset, we focused on spatial relationships that directly impact robotic perception,
planning, and interaction: context, compatibility, and configuration. These were selected to reflect
the core spatial reasoning challenges that robots encounter when operating in complex, real-world
environments.

We intentionally excluded tasks such as object counting, as we consider them to fall outside the
scope of spatial understanding. While counting is an important visual reasoning skill, it does not
require reasoning about spatial relations between objects or between objects and their environment.
For example, determining that “three cups are on the table” is a perceptual task rather than a spatial
reasoning one. As such, counting may complement but does not substitute for the types of relational
reasoning we target. We leave the integration of counting tasks into spatial benchmarks as future
work.

Similarly, we exclude tasks that rely solely on distance measurements. Although distance is a fun-
damental spatial quantity, it is difficult to define consistently across different environments, object
scales, and robot embodiments. Absolute distances can vary significantly between indoor and out-
door scenes, small and large objects, or different robot perspectives, making them hard to normalize
or interpret in a general way. Moreover, distance alone often lacks the relational semantics required
for higher-level reasoning—for example, understanding that an object is behind, above, or in front of
others. ROBOSPATIAL instead focuses on spatial relationships that are more invariant, interpretable,
and transferable across diverse robotic scenarios.

That said, the data generation pipeline is general and could readily support auxiliary tasks involving
object counting or distance estimation if desired. These metrics may serve as useful complements
in future extensions of the benchmark or as auxiliary supervision signals in model training.

B.4 Object Grounding Dataset

To support accurate spatial understanding, we generate an auxiliary dataset for object grounding.
Many spatial reasoning tasks assume that the model can correctly identify which object is being
referred to in the scene. However, in practice, this can be a major source of error—especially in
cluttered environments or when multiple instances of the similar object type are present.

The grounding dataset provides direct supervision to help models learn to associate text descriptions
with specific objects in the image. For each image, we include a set of object descriptions (e.g., “the
keyboard” or “the chair”) paired with the corresponding 2D bounding box of the object in the image.
These 2D boxes are projected from the annotated 3D bounding boxes using camera intrinsics and
extrinsics.

A total of 100k grounding QA pairs are generated and used during training to reduce reference am-
biguity and improve object identification accuracy in spatial tasks. While not part of the main spatial
reasoning taxonomy, grounding accuracy is a prerequisite for answering spatial questions correctly,
and we find that including this data helps reduce errors caused by incorrect object identification.

B.5 Dataset Generation Details

The dataset generation pipeline is detailed in the main text (subsection 3.2), which introduces a
two-stage process for computing 3D spatial relationships and projecting them into 2D image space.
Here, we expand on implementation details not covered in the main paper and provide clarification
on the reasoning logic used in spatial annotation.

Reference Frame Annotation. For each spatial configuration question, we label relationships from
three perspectives: ego-centric (camera view), object-centric (based on object heading), and world-
centric (aligned with the dataset’s global frame). To compute object-centric directions, we use the
heading vector of each oriented 3D bounding box to define the “front” of the object. Left, right,
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Top-down Map3D Bounding Boxes

Figure 5: An example of generated top-down map of the image from 3D bounding boxes.

Category Dataset Split Scans Images Configuration Q Context Q Compatibility Q

Indoor

Matterport3D [56] Train 1859 scans 236243 298439 298439 298439
Validation 10 scans 200 200 200 200

ScanNet [55] Train 1514 scans 280402 299039 299039 299039
Validation 12 scans 400 400 400 400

3RScan [57] Train 1543 scans 366755 298839 298839 298839
Validation 18 scans 400 400 400 400

Tabletop
HOPE [58] Train 60 scenes 50050 36817 36817 36817

Validation 47 scenes 235 500 500 500

GraspNet-1B [59] Train 130 scenes 25620 36817 36817 36817
Validation 30 scenes 120 500 500 500

Table 5: Full dataset statistics for indoor and tabletop datasets.

behind, and front relations are then assigned accordingly. World-centric annotations modify vertical
relationships (above/below) using global z-coordinates to reflect elevation.

Surface Detection and Free Space Sampling. To identify support surfaces such as tables, counters,
or floors, we use GPT-4o to select candidate objects that are likely to support placement. A top-down
occupancy map is constructed from bounding boxes in the scene fig. 5. We sample 3D points in
unoccupied regions and project them into the image plane for spatial context tasks. Points are filtered
via occlusion checks using raycasting, ensuring sampled points are visible and unobstructed.

Compatibility Check and Object Placement. For spatial compatibility, we simulate placing a
virtual object bounding box at candidate locations. The placement must fit without intersecting
other objects and must allow a clearance of at least 10 cm in all axes. We allow in-plane rotation and
translation to test flexible placement. This provides a binary label (True/False) indicating whether
the object can be compatibly placed in the region.

Output Format. Though ROBOSPATIAL uses point prediction for ease of integration with robot
setups, the pipeline also supports mask-based outputs and can be extended in future work.

C Implementation Details

C.1 Evaluation Metrics

For ROBOSPATIAL-Val and ROBOSPATIAL-Home, each of the three spatial reasoning categories
(configuration, compatibility, context) contains 2,000 questions. Binary questions are scored by
accuracy. Coordinate-based context tasks require predicting one or more points in free space; pre-
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Model Indoor Tabletop Average
Configuration Context Compatibility Configuration Context Compatibility Indoor Tabletop Total

Open-source VLMs
2D VLMs

VILA [12] 54.7 18.3 56.3 45.1 13.2 53.8 43.1 37.4 40.2
+ROBOSPATIAL 71.4 ↑ 45.9 ↑ 77.2 ↑ 71.8 ↑ 43.7 ↑ 73.3 ↑ 64.8 ↑ 62.9 ↑ 63.9 ↑

LLaVA-NeXT [11] 48.9 12.5 32.7 48.3 8.4 30.9 31.4 29.2 30.3
+ROBOSPATIAL 69.3 ↑ 41.3 ↑ 70.5 ↑ 70.7 ↑ 44.8 ↑ 66.1 ↑ 60.4 ↑ 60.5 ↑ 60.5 ↑

SpaceLLaVA [17] 52.6 15.3 49.0 66.5 12.2 60.1 38.9 46.2 43.6
+ROBOSPATIAL 76.0 ↑ 50.7 ↑ 76.6 ↑ 74.9 ↑ 46.4 ↑ 70.5 ↑ 67.8 ↑ 63.6 ↑ 65.7 ↑

RoboPoint [19] 39.0 41.4 38.3 37.9 31.6 45.2 39.6 38.2 38.9
+ROBOSPATIAL 72.2 ↑ 68.9 ↑ 72.1 ↑ 70.3 ↑ 61.7 ↑ 78.4 ↑ 71.0 ↑ 70.1 ↑ 70.6 ↑

3D VLMs
3D-LLM [53] 54.5 8.1 53.6 59.2 10.6 57.4 37.6 42.4 40.0

+ROBOSPATIAL 76.3 ↑ 35.4 ↑ 77.5 ↑ 76.2 ↑ 46.8 ↑ 75.0 ↑ 63.1 ↑ 66.0 ↑ 64.6 ↑
LEO [54] 56.1 11.3 58.3 60.8 11.1 59.3 41.9 43.7 42.8

+ROBOSPATIAL 80.2 ↑ 56.7 ↑ 82.5 ↑ 78.1 ↑ 55.2 ↑ 78.9 ↑ 73.1 ↑ 70.7 ↑ 71.9 ↑
Not available for fine-tuning

2D VLMs
Molmo [20] 40.6 48.2 60.0 61.5 35.8 54.6 49.6 50.6 50.1
GPT-4o [10] 63.5 25.1 59.4 62.3 27.9 66.8 49.3 52.3 50.8

Table 6: Results of existing 2D/3D VLMs on a held-out validation split (ROBOSPATIAL-Val) of
images and scans. All methods, for all tasks, perform better (↑) when fine-tuned on ROBOSPATIAL.
The best result for each column is bolded.

Model Indoor Tabletop Average
Ego-centric Object-centric World-centric Ego-centric Object-centric World-centric Indoor Tabletop Total

Open-source VLMs
2D VLMs

VILA [12] 55.9 40.5 32.9 43.6 39.7 28.9 43.1 37.4 40.2
+ROBOSPATIAL 74.3↑ 57.8 ↑ 62.3 ↑ 70.3 ↑ 58.1 ↑ 60.3 ↑ 64.8 ↑ 62.9 ↑ 63.9 ↑

LLaVA-Next [11] 35.2 24.3 34.7 36.4 28.5 22.7 31.4 29.2 30.3
+ROBOSPATIAL 75.4 ↑ 54.1 ↑ 68.8 ↑ 67.9 ↑ 54.7 ↑ 58.9 ↑ 60.4 ↑ 60.5 ↑ 60.5 ↑

SpaceLLaVA [17] 40.6 36.0 30.1 52.3 32.8 53.5 38.9 46.2 43.6
+ROBOSPATIAL 78.5 ↑ 60.6 ↑ 64.3 ↑ 73.0 ↑ 49.5 ↑ 68.3 ↑ 67.8 ↑ 63.6 ↑ 65.7 ↑

RoboPoint [19] 41.9 36.2 40.7 46.2 30.5 37.9 39.6 38.2 38.9
+ROBOSPATIAL 76.4 ↑ 58.3 ↑ 78.3 ↑ 76.7 ↑ 62.6 ↑ 71.0 ↑ 71.0 ↑ 70.1 ↑ 70.6 ↑

3D VLMs
3D-LLM [53] 28.9 38.3 45.6 38.9 35.7 52.6 37.6 42.4 40.0

+ROBOSPATIAL 60.7 ↑ 52.1 ↑ 76.5 ↑ 57.9 ↑ 62.8 ↑ 77.3 ↑ 63.1 ↑ 66.0 ↑ 64.6 ↑
LEO [54] 46.9 30.6 48.2 41.4 34.3 55.4 41.9 43.7 42.8

+ROBOSPATIAL 68.1 ↑ 71.6 ↑ 79.6 ↑ 71.4 ↑ 60.2 ↑ 80.5 ↑ 73.1 ↑ 70.7 ↑ 71.9 ↑
Not available for fine-tuning

2D VLMs
Molmo [20] 50.4 50.8 47.6 64.4 33.6 53.8 49.6 50.6 50.1
GPT-4o [10] 52.9 38.7 56.3 62.5 30.7 63.7 49.3 52.3 50.8

Table 7: Results of per frame accuracy of existing 2D/3D VLMs on a ROBOSPATIAL-Val.
All methods, for all tasks, perform better (↑) when fine-tuned on ROBOSPATIAL. The best
result for each column is bolded.

dictions are deemed correct if their 3D locations fall within the convex hull of the ground-truth set
derived from scene geometry. This criterion is intentionally strict—predictions close but outside the
hull are marked incorrect—making reported scores a conservative estimate.

C.2 Model Training

We further explain the training details for all 2D and 3D VLMs trained on ROBOSPATIAL. For
all models, we perform instruction tuning using the model weights from public repositories. All
training is done using 8 Nvidia H100 GPUs, with the training time between 20 and 40 hours.

C.3 Model Setup

VILA [12] We initialize the model from Efficient-Large-Model/Llama-3-VILA1.5-8B on Hugging
Face. We use the fine-tuning script from the VILA GitHub repository to train the model using the
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100K 300K 900k (Default) 1.8M 3M (Full)

LLaVa-Next [11] 38.1 46.7 60.5 65.8 72.4
Table 8: Results of scaling experiment on LLaVa-Next [11] with varied number of spatial relation-
ship annotations. Average accuracy on ROBOSPATIAL-Val is reported.

MMMUval MMEp MMEc MMBenchdev

LLaVA-NeXT 39.4 1561.8 305.4 71.6
+ROBOSPATIAL 39.8 1604.5 293.2 71.6

Table 9: Evaluation on general-purpose multimodal benchmarks (MMMU, MME, MMBench) to
assess whether training on ROBOSPATIAL affects commonsense and factual reasoning.

default hyperparameters.
LLaVA-NeXT [11] We initialize the model from lmms-lab/llama3-llava-next-8b on Hugging Face.
We use the LLaVA-Next fine-tuning script from the LLaVA-Next repository using the default hy-
perparameters.
SpaceLLaVA [17] As official code and weights for SpatialVLM [17] is not released, we use a com-
munity implementation which is endorsed by SpatialVLM [17] authors. We initialize the model from
remyxai/SpaceLLaVA from Hugging Face. We use LLaVA-1.5 finetuning script from LLaVa [62]
repository using the default hyperparameters.
RoboPoint [19] We initialize the model from wentao-yuan/robopoint-v1-vicuna-v1.5-13b on Hug-
ging Face. We use the fine-tuning script provided in the RoboPoint [19] GitHub repository to train
the model using the default hyperparameters.
3D-LLM [53] We initialize the model using the pretrain blip2 sam flant5xl v2.pth checkpoint
downloaded from the official GitHub repository. Since the model requires preprocessing of mul-
tiview images, we follow the author’s pipeline to process multiview images from the environments.
Because the model does not accept image input, we append the following text in front of the ques-
tion to ensure the model understands the perspective from which the question is being asked: “I am
facing ANCHOR OBJECT.” We use the default hyperparameters and train the model for 20 epochs
per the author’s guidelines. We choose the best model based on validation accuracy.
LEO [54] We initialize the model from the sft noact.pth checkpoint downloaded from the official
GitHub repository.
Since LEO supports dual image and 3D point cloud input, we input both of them and modify the
question as in 3D-LLM. We use the default hyperparameters and train the model for 10 epochs per
the author’s guidelines, and choose the best model based on validation accuracy.

We could not fine-tune Molmo [20] from allenai/Molmo-7B-D-0924 or GPT-4o [10] from the gpt-
4o-2024-08-06 API due to the unavailability of the fine-tuning script at the time of this work, thus
we use them as a zero-shot baselines.

D More Results

D.1 Accuracy Per Reference Frame

We show the results per frame in table 7 for ROBOSPATIAL-Val. From the results, we can see a dis-
tinct difference between 2D and 3D VLMs in understanding the world-centric frame before training
with ROBOSPATIAL. Baseline 2D VLMs have trouble understanding the world-centric frame, which
involves understanding elevation, while 3D VLMs comparatively excel at it. Furthermore, we can
see that since baseline 3D VLMs are trained on point clouds without information of perspective, their
accuracy in ego-centric and object-centric frames is lower. However, with ROBOSPATIAL training,
we were able to teach the 3D VLMs to think in a certain frame, thus considerably improving their
performance on ego-centric and object-centric frames. However, we hypothesize that, due to their
design—specifically, the lack of a means to visually inject perspective information since they require
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Base Auxiliary ROBOSPATIAL Both
LLaVA-NeXT 30.3 32.4 51.8 60.5

Table 10: Ablation study evaluating the impact of the auxiliary grounding dataset on ROBOSPATIAL-
Val.

complete 3D point clouds—3D VLMs still lag behind 2D VLMs on ego-centric and object-centric
frames.

D.2 Data Scaling

In table 8, we experiment with scaling the number of annotations while keeping images fixed. We
found that even though the number of images stays consistent, increasing the number of annotations
can improve performance. For future work, we plan to apply the data generation pipeline to a diverse
set of indoor and tabletop environments to further improve the performance of the models.

D.3 Commonsense Knowledge Retention

To ensure that training on ROBOSPATIAL does not degrade a model’s general reasoning or com-
monsense capabilities, we evaluate the RoboSpatial-trained model on a suite of standard multimodal
benchmarks: MMMU [63], MME [64], and MMBench [65]. As shown in Table 9, the ROBOSPA-
TIAL-trained model maintains or slightly improves performance across all benchmarks, suggesting
that spatial fine-tuning preserves broader knowledge capabilities.

D.4 Ablation of the Auxiliary Grounding Dataset

As shown in Table 10, training on the auxiliary dataset alone yields a small improvement over the
base model (+2.1), but it falls far short of the gains achieved with ROBOSPATIAL, which is explicitly
designed to teach spatial reasoning. This confirms that grounding supervision alone is insufficient for
spatial understanding. However, combining both datasets leads to the best performance, suggesting
that improving object localization can complement spatial supervision when jointly trained.

D.5 Robot Experiments Details

D.5.1 Robot Setup

For picking, we find which object the point maps to using SAM 2 [66] and execute the picking
behavior on that object. For placing, we simply compute the 3D coordinate based on the depth value
at that pixel and place the object at that coordinate. There were no failures due to cuRobo [60]
failing. The experiments were purposely designed to consist of behaviors that our robot system can
handle in order to avoid introducing irrelevant factors. The picking behavior consists of computing
a top-down grasp pose and reaching it with cuRobo [60]. To compute the grasp pose:

1. We estimate the major axis of the object’s point cloud in top-down view using PCA.

2. The grasp orientation is orthogonal to the major axis.

3. The grasp height is based on the highest point in the object’s point cloud minus an offset of
3cm. This heuristic ensures the system can grip long objects.

The placing behavior is the same as picking, except that an area within 5cm of the placement coor-
dinate is used as the point cloud for estimating orientation and height, and a vertical height offset is
added to account for the height at which the object was picked.

D.5.2 Additional Results

We present additional results from the robot experiments in fig. 6. We observe that models trained
with ROBOSPATIAL consistently outperform baseline models in most cases, even though the prompt
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is not optimized for ROBOSPATIAL-trained models. This demonstrates that the power of VLMs en-
ables templated language to generalize to language unseen during training while maintaining spatial
understanding capabilities. However, even with ROBOSPATIAL training, the models struggle with
understanding stacked items, indicating a need for further data augmentation with diverse layouts. In
a few cases, ROBOSPATIAL training adversely affects performance, especially with RoboPoint [19].
We hypothesize that mixing the dataset with RoboPoint training data and ROBOSPATIAL training
data may lead to unforeseen side effects, particularly in grounding objects. Nevertheless, we demon-
strate that ROBOSPATIAL training enhances VLM’s spatial understanding in real-life robotics exper-
iments, even with freeform language.

D.6 More Qualitative Examples

fig. 7 present additional qualitative comparisons between models trained on ROBOSPATIAL. The
findings demonstrate that models trained on ROBOSPATIAL consistently exhibit spatial understand-
ing in the challenging ROBOSPATIAL-Home dataset, even outperforming closed models like GPT-
4o [10]. However, we observed that object grounding is a crucial prerequisite for spatial understand-
ing; the improvement is often hindered by the model’s inability to ground objects in cluttered scenes,
where GPT-4o performs more effectively. Additionally, we show that the ROBOSPATIAL-trained
model successfully generalizes to unseen spatial relationships in BLINK-Spatial [23], including
those involving distance, such as ”touching.”
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Question: pick lone object

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ✓
Molmo [20] ✓
GPT-4o [10] ×

Question: Is there room to slot the pan-
cake mix in the middle of the row of
boxes

LLaVa-Next [11] ✓
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ✓
Molmo [20] ✓
GPT-4o [10] ✓

Question: Is there space in the white
container for the orange juice box

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ×
Molmo [20] ×
GPT-4o [10] ✓

Question: pick object behind the mid-
dle container

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ✓
RoboPoint-FT [19] ×
Molmo [20] ×
GPT-4o [10] ×

Question: place object in container be-
hind popcorn

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ✓
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ×

Question: alphabet soup fit in the pur-
ple box

LLaVa-Next [11] ✓
LLaVa-Next-FT [11] ×
RoboPoint [19] ✓
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ✓

Question: pick shortest object

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ✓
RoboPoint-FT [19] ✓
Molmo [20] ✓
GPT-4o [10] ✓

Question: place the object inside the
smallest box

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ✓
RoboPoint-FT [19] ✓
Molmo [20] ✓
GPT-4o [10] ×

Question: can the robot directly pick
the red orange peaches can without dis-
turbing other objects?

LLaVa-Next [11] ✓
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ×
Molmo [20] ✓
GPT-4o [10] ✓

Question: can the macaroni and cheese
be placed on top of cheez-it without
touching other objects?

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ×
RoboPoint [19] ✓
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ✓

Question: place on the object to the left
of macaroni and cheese

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ✓
RoboPoint-FT [19] ✓
Molmo [20] ✓
GPT-4o [10] ×

Question: is there an object that is not
in a stack?

LLaVa-Next [11] ✓
LLaVa-Next-FT [11] ✓
RoboPoint [19] ✓
RoboPoint-FT [19] ✓
Molmo [20] ✓
GPT-4o [10] ✓

Question: is there space to place one of
the cans on the cheez-it box?

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ×
RoboPoint [19] ×
RoboPoint-FT [19] ×
Molmo [20] ×
GPT-4o [10] ×

Question: pick the highest object on
the stack of two objects

LLaVa-Next [11] ×
LLaVa-Next-FT [11] ×
RoboPoint [19] ×
RoboPoint-FT [19] ×
Molmo [20] ×
GPT-4o [10] ×

Figure 6: Additional robot experiments. A green check mark indicates that the model
answered correctly. The -FT suffix denotes a model trained with ROBOSPATIAL. The
questions are purposely not cleaned to reflect realistic language inputs.
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Question: Pinpoint several points
within the vacant space situated to the
left of the pot.

Answer
LLaVa-Next [11]
LLaVa-Next-FT [11]
RoboPoint [19]
RoboPoint-FT [19]
Molmo [20]
GPT-4o [10]

Question: Pinpoint several points
within the vacant space situated behind
the trash bin.

Answer
LLaVa-Next [11]
LLaVa-Next-FT [11]
RoboPoint [19]
RoboPoint-FT [19]
Molmo [20]
GPT-4o [10]

Question: Can the lamp fit in front of
the shelf?

Answer Yes
LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ×

Question: Is the lamp above the shelf?

Answer Yes
LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ✓

Question: Is the dining table touching
the donut?

Answer Yes
LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ×

Question: Can the pot fit above the
fridge?

Answer Yes
LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ×

Question: Is the chair behind the bed?

Answer Yes
LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ×

Question: Is the couch under the suit-
case?

Answer Yes
LLaVa-Next [11] ×
LLaVa-Next-FT [11] ✓
RoboPoint [19] ×
RoboPoint-FT [19] ✓
Molmo [20] ×
GPT-4o [10] ×

Figure 7: Qualitative results on spatial reasoning benchmarks. The -FT suffix denotes a
model trained with ROBOSPATIAL. The first three rows show examples from ROBOSPA-
TIAL-Home, covering spatial context, spatial compatibility, and spatial configuration. For
spatial context questions, only the first predicted point from each model is shown. The
fourth row shows generalization to unseen spatial relationships on the Blink-Spatial [23]
dataset, demonstrating that the ROBOSPATIAL-trained model can transfer to unseen rela-
tionships.
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