Demystifying Diffusion Policies: Action
Memorization and Simple Lookup Table Alternatives
Project Page: https://stanfordmsl.github.io/alt/

Code: https://github.com/StanfordMSL/alt

Chengyang He''>* Xu Liul'"* Gadiel Sznaier Camps' Joseph Bruno!:?
Guillaume Sartoretti’ Mac Schwager!
!Stanford University 2National University of Singapore
3Temple University ~ *Equal Contribution
hecy@stanford.edu liuxujsw@stanford.edu gsznaier@stanford.edu
brunoj6@temple.edu schwager@stanford.edu guillaume.sartoretti@nus.edu.sg

Abstract: Diffusion policies have demonstrated remarkable dexterity and robust-
ness in intricate, high-dimensional robot manipulation tasks, while training from
a small number of demonstrations. However, the reason for this performance re-
mains a mystery. In this paper, we offer a surprising hypothesis: diffusion policies
essentially memorize an action lookup table—and this is beneficial. We posit that,
at runtime, diffusion policies find the closest training image to the test image in
a latent space and recall the associated training action sequence, offering reactiv-
ity without the need for action generalization. This is effective in the sparse data
regime, where there is not enough data density for the model to learn action gen-
eralization. We support this claim with systematic empirical evidence. Even when
conditioned on wildly out of distribution (OOD) images, the Diffusion Policy still
outputs an action sequence from the training data. With this insight, we propose
a simple policy, the Action Lookup Table (ALT), as a lightweight alternative to
the Diffusion Policy. Our ALT policy uses a contrastive image encoder as a hash
function to index the closest corresponding training action sequence, explicitly
performing the computation that the Diffusion Policy implicitly learns. We show
empirically that for relatively small datasets, ALT matches the performance of
a diffusion model, while requiring only 0.34% of the inference time and 0.85%
of the memory footprint, allowing for much faster closed-loop inference with re-
source constrained robots. We also train our ALT policy to give an explicit OOD
flag when the distance between the runtime image is too far in the latent space
from the training images, giving a simple but effective runtime monitor.

Keywords: Robot Manipulation, Diffusion Policy, Action Memorization

1 Introduction

Imitation learning for robot manipulation requires training a policy to map from image inputs to
action sequence outputs given a relatively small number of demonstrations. Recently, the Diffusion
Policy [1] has emerged as a powerful and novel approach to this problem by modeling the robot’s
visuomotor policy as a denoising diffusion probabilistic model [2]. Diffusion models are generative
models that train a filter to iteratively remove noise from noise-corrupted training data. At inference
time a random output is sampled, and progressively denoised (conditioned on the input) to produce
an inference. The diffusion model was originally introduced for image generation and remains the
dominant architecture in that domain [3, 4]. The primary advantage of the Diffusion Policy for robot
maipulation lies in its ability to model multi-modal action distributions, scale to high-dimensional

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://stanfordmsl.github.io/alt/
https://github.com/StanfordMSL/alt

outputs, and produce long-horizon action sequences. Indeed, recent studies have shown that diffu-
sion policies outperform many existing methods on challenging manipulation benchmarks [5, 6].

The performance of the Diffusion Policy is unquestionable, however the explanation for this perfor-
mance remains elusive. In particular, typical diffusion policies are trained on 50-200 task demon-
strations (a small amount of data), while maintaining the same number of parameters (typically over
100 million) as image generation models trained on billions of images [3, 4]. Furthermore, the com-
mon practice is to train Diffusion Policies until the training loss is low, but the test loss is high—the
classic signal for over-fitting in machine learning. In typical machine learning, overfitting is associ-
ated with poor test-time performance and poor generalization. Yet it is observed that this overfitting
is actually necessary for strong test time performance of the Diffusion Policy. The question arises:

Why do diffusion policies trained to overfit small data sets appear to give strong test-time perfor-
mance in robot manipulation?

In this paper we show that, indeed, diffusion policies severely overfit the training data, such that they
memorize the training action sequences. At inference, diffusion policies recall the training action
sequences with nearly no generalization. They essentially perform a lookup table that maps runtime
images to training action sequences. Combined with online closed-loop execution with runtime
images, this action memorization appears to be a winning recipe for strong manipulation policies
obtained from small amounts of demonstration data. The stochastic multi-modality of the policy
results from slight randomness in which training action sequence is indexed, not from generaliza-
tion over action sequences. However, one key drawback of the Diffusion Policy is slow inference
time, which leads to slow robot execution punctuated by pauses as the model recomputes the next
inference at the end of each action sequence. This motivates our second research question:

Can the same action memorization behavior be accomplished with a simpler, faster model architec-
ture to yield faster runtime performance?

To answer this question, we propose a simple lookup table policy with a trained image encoder to
map from images to actions, which we call the Action Lookup Table (ALT) policy, illustrated in
Fig. 1. The ALT policy performs similarly to the Diffusion Policy, while being 300 times faster at
inference, and requiring less than 1/100th the memory footprint.

Concretely, we design a lightweight image-joint -
. S
pose encoder that maps each provided observa- Images o %
tion into a low-dimensional feature representation A asaft

(LFR), which we then use to create a memory bank Image, A
of LFRs from the training expert demonstrations. H.O
During inference, we then encode new observa- s

. .. . S 2

tions, find the nearest code from the training set in Image, | e

the latent space, and output the memorized train- 3

ing action sequence associated with that code. The A LA
encoder is trained using a contrastive learning ob- \CL embedding
jective [7], encouraging positive sample pairs to space

be embedded closer together while pushing nega- Figure 1: Resulting latent space of our con-
tive pairs apart in the latent space. ALT avoids the trastive learning (CL) based ALT on our train-
costly iterative denoising steps, enabling faster (sin- 1n& data, illustrating the distribution of train-
gle forward-pass) inference. ing examples and example in- (1,2) and out-

of-distribution (3) test images.

Our contributions are as follows: (1) We hypoth-
esize the Diffusion Policy implicitly memorizes an action lookup table. We provide conceptual
intuition for this hypothesis and support it through extensive empirical validation. (2) We present a
new ALT policy (as shown in Fig. 1), a contrastive learning-based alternative to diffusion policies,
explicitly implementing an action sequence lookup table by encoding image-joint pose inputs into a
latent space to index training action sequences. By setting a threshold distance in the latent space,
we obtain a simple OOD detector to flag potential policy failures at runtime.

2 Prior Work

Diffusion models, trained by gradually adding Gaussian noise to data during training [2, 8, 9], were
originally developed for high-dimensional data generation tasks such as image, video, or audio
synthesis [10, 11]. These models can produce seemingly novel high-quality images and videos in a
variety of different styles through simple text [8, 12, 13, 3] and image [14, 15, 16] prompt condition-
ing. In order to capture the complex multimodal distributions inherent in visual and auditory data,
these models are often large, containing from hundreds of millions to billions of parameters [3, 4],
and are trained over large datasets with hundreds of millions to billions of examples [11].

Leveraging the strong performance of diffusion models, the Diffusion Policy [1] achieves state-
of-the-art performance in visuomotor control for single skill imitation learning. Trained with a
limited number of expert demonstrations, the model learns to predict a sequence of robot actions
[1, 17, 18, 19] conditioned on a given observation. This observation can be images [1], point clouds
[5], semantic labels [20, 21] or potential fields [22]. Due to its apparent robustness to perturbations,
diffusion policies have been deployed for a wide range of robotics tasks, including manipulation
[23, 24, 1], multi-skill learning [25, 26], and motion planning [27, 28, 29]. Diffusion models have
also been used in robotics for data augmentation [30, 31] to aid in the training of other models.

The phenomenon of memorization in diffusion models has been well-studied in image generation,
but not in robotics, to our knowledge. While unsurprising for smaller datasets [32], as much as
2% reconstructive memorization in diffusion models has also been documented on larger datasets
[33, 34]. Although, this can be mitigated with synthetic data augmentation [35], it has been shown
that the traditional denoising process biases the model to learn an attraction basin for each training
sample [32, 36, 37]. Similarly, both [38] and [39] note that, although less prevalent than conditioned
models, memorization still occurs in unconditioned models and [40] finds that memorized data are
often associated with individual neurons.

Modifying the loss function [41], gradients [41], conditioning approach [36], or keyword prompts
[37, 38, 42] during training and inference are all typical methods for reducing model memorization.
Although considered undesirable in image generation, we posit that memorization is actually benefi-
cial for robotics. When diffusion models are used in domains with rich input space (e.g., images) but
limited output space (e.g., robot actions), the gap between model capacity and output dimensional-
ity, combined with imitation learning (which lacks task-level supervision), makes memorization via
overfitting a plausible explanation for its strong performance in in-distribution settings. Along these
lines, previous approaches have explored reusing past demonstrations in conjunction with paramet-
ric generalizations. They obtain the next action using frame-level nearest-neighbor action retrieval
[43], action prototypes obtained based on a bounded residual [44], or by utilizing a learned con-
text embedding composed of multiple trajectory fragments [45]. In comparison, our proposed ALT
method directly obtains the closest action sequence from a lookup table via a contrastive image en-
coder, bypassing any parametric policy entirely, thereby allowing it to be lightweight and fast unlike
more compute-intensive hybrid alternatives.

3 Diffusion Policy Analysis

3.1 Preliminaries

The output, x°, of a diffusion model, g, is obtained by iteratively removing noise (i.e. denoising)
from a starting value, x*, sampled from a Normal Distribution, A(0, 721). The denoising process
evolves according to

xPh = a(x? — yeg(x*, k) + N(0,0%1) (1)

to remove the noise in k steps based on a predetermined noise schedule that specifies the values of
a, o, and y at each iteration. This procedure can be thought of as a single stochastic gradient descent
step 2’ = x — YV E(x), where the model ¢y is used to predict the gradient field VE(z). A more
detailed explanation of the denoising process can be found in [1] and [2].

Training Samples ,‘
© Random seeds = [f,

for diffusion /8% A

Denoising flow. > 7 ‘\&

direction - = ﬁd g Y s,
o w : 7

5
®Final inference

s
N

E et ? i
= =

» 1Y 1"';7’/";;_;\‘}“
(a) low-capacity (b) low-capacity (c) high-capacity (d) high-capacity
model, small data model, large data model, SD (e.g. model, LD (e.g.
(SD) (LD) Diffusion Policy) Image Diffusion)

Figure 2: Generative model trained on 2D points uniformly distributed on a star-shaped 1D mani-
fold. Each subplot shows a different training regime: (a) Low-capacity model (~400 parameters)
trained on a small dataset (3k samples) gives erratic inferences. (b) Low-capacity model trained on
a large dataset (100k samples) generalizes to the wrong manifold. (c) High-capacity model (~9.5
million parameters) trained on a small dataset (the Diffusion Policy regime) approximately memo-
rizes the dataset, but does not generalize. All the inference (blue) overlay the training data (orange)
points, essentially implementing a lookup table. (d) High-capacity model trained on a large dataset
shows strong generalization to the correct data manifold (regime of large scale image diffusion mod-
els). Similar observations are demonstrated for other 2D manifolds in Appendix C.

3.2 Diffusion Model Generalization Regimes

The degree that a model memorizes or generalizes lies on a spectrum, but can be approximately
grouped into four regimes: low-capacity model with little data; low-capacity model with ample
data; high-capacity model with little data; and high-capacity model with ample data. We qualita-
tively demonstrate these regimes with a simple Multi-Layer Perceptron (MLP) diffusion denoising
model trained to learn a 2D distribution consisting of points uniformly sampled on a 1D star shaped
manifold (Fig. 2).

As expected, when a low-capacity model is trained on a small dataset (Fig. 2a), it fails to fit the
data adequately. Similarly, due to its limited capacity, when such a model is given sufficient data
(Fig. 2b), it is only able to learn an approximation that oversimplifies the data manifold (here, ap-
proximating a star shape as a hexagon). In comparison, when a high-capacity model is trained on
a small dataset (Fig. 2¢c), as proposed by the original Diffusion Policy paper, it tends to memorize
the individual training samples rather than generalizing or interpolating between them. This mem-
orization allows accurate fitting of the limited training points (good for robot manipulation tasks),
but results in the model failing to capture the broader underlying data manifold, a behavior that
is consistent with our findings for diffusion policies for robot manipulation. This phenomenon is
related to manifold overfitting [46]: when a powerful generative model is trained on data lying on
a narrow sub-manifold, it might fit the data too closely while struggling outside that sub-manifold.
When the model is provided sufficient data (Fig. 2d), it is now able to effectively fit both the data
and the true underlying distribution, representing the regime common in large scale image gener-
ation models.! However, acquiring large-scale expert demonstrations for robot manipulation that
evenly and densely cover the action sequence space remains a significant practical challenge. As
Diffusion Policies are trained on larger and larger datasets, they may move toward the large data
regime (Fig. 2d) with true generalization on the action manifold, but this seems to be beyond the
current state of the art.

3.3 Hypothesis and Experiments

To evaluate the hypothesis that the Diffusion Policy implicitly implements an action sequence
lookup table, we analyzed two different simulated manipulation benchmarks performed by Dif-
fusion Policy (results shown in Appendix D) as well as designed a series of real-world cup
grasping experiments. In the real-world experiments, we trained a diffusion policy to grasp
cups using the standard codebase from [1], trained with 30 demonstrations of cup locations
evenly spaced throughout the workspace, with a held-out square in the middle, as indicated

"More results can be found in Appendix C

by the green circles and blue tape in Fig. 3.

The robot has a third-person view fixed cam-

era and a wrist mounted camera, both used to condition the policy. For each position, we per-
formed one demonstration (to remove the confounding effect of multi-modal action generation).

We then validated the learned policy on the 30 in-
distribution cases, confirming its ability to reproduce the
training demonstrations. To further investigate the ac-
tion generalization behavior of the policy, we also sys-
tematically introduced a variety of interpolation and ex-
trapolation inputs, ranging from in-distribution (InD) to
out-of-distribution (OOD) and analyzed the resulting be-
havior. Specifically, we designed four scenarios: (1:InD-
Interpolate) Placing the cup at evenly spaced test po-
sitions located between the original training positions
(Fig. 3 green border); (2:00D-Interpolate) Slowly mov-
ing the cup from one in-distribution position through an
OOD region (blue tape square) to another in-distribution
position (Fig. 3 blue border); (3:00D-Extrapolate) Grad-
ually moving the cup from an in-distribution position to
an OOD location outside the fixed camera’s field of view

Figure 3: The first panel (red outline)
shows in-distribution (InD) tests. The
second panel (green outline) shows an
InD interpolation test, with cup evenly
placed between training positions. Pan-
els with purple and blue outlines illus-
trate cases where the cup is gradually
moved from an in-distribution location

to new OOD position. The remaining
panels (yellow outline) introduce OOD
image distractors to assess the model’s
robustness.

(Fig. 3 purple border). (4:00D-Distractors) Introducing
OOD visual distractors of varying difficulty levels (Fig. 3
yellow border), including differing lightning conditions
and wildly OOD images of a cat and a dog; These settings
allowed us to explore and analyze the generalization behavior and potential memory-driven charac-
teristics of the Diffusion Policy. If the Diffusion Policy were performing action generalization, one
would expect the following in each scenario: (1:InD-Interpolate) interpolation in the action space;
(2:00D-Interpolate) some action interpolation with degraded performance in the middle, where it
is far from the training examples; (3:00D-Extrapolate) progressively degraded action performance
as the object moves farther from the training set; and (4:00D-Distractors) degraded action perfor-
mance as the number and severity of distractors grows, with dog and cat inducing erratic action
sequences.

In fact, all of these behavioral expectations are incorrect. In every case, the Diffusion Policy almost
exactly reproduces one of the training action sequences as explained below. This is consistent with
our action lookup table hypothesis.

3.4 Results

In this subsection, we introduce a custom metric, the similarity score, designed to quantify how
closely an inference action sequence resembles sequences from the training set. It is defined as:
S—1 s(r(M)

— @y Where s(7("), 7(1)) denotes the average Euclidean distance between the matched
s(r(),7(2)) ’

points on the current action sequence and its closest training sequence, and 5(7(1), 7(2)) denotes the
distance between the second-closest and the closest training action sequence.

If an action sequence closely follows a specific training sequence while maintaining a clear sep-
aration from other nearby sequences, this provides strong evidence of memory-based retrieval
rather than action generalization. Note that this similarity metric does not measure action qual-
ity, just action recall. For example, the robot may take a highly ineffective action sequence,
but if it closely matches one of the training sequences, the similarity score will be high. We
make no claims on the effectiveness of the Diffusion Policy actions. Just that they are re-
called from a memorization of the training actions. We first validate our hypothesis in an in-
distribution setting, where cups are placed exactly as they were seen during training. In this
setting, we observe that in each action sequence almost perfectly overlaps with the correspond-
ing training sequence (see Fig. 11 in Appendix D). This indicates that the model is essentially
replaying an action sequence memorized during training when presented with familiar inputs.

We find that this behavior persists even under OOD sce-

narios (as introduced to the environment in Fig. 3 in the I - I 7
yellow borders). In Fig. 4 (bottom), regardless of whether

distractors are present, the distance to the closest training

trajectory remains very low, and the distance to the sec- I sal I =
ond closest remains high. As a result, the similarity score - r b :

of the nearest neighbor remains close to 1.0, while the I l

second nearest similarity approaches 0.0. Again, we do i L6 Li k&
not find that the action sequence is the “right one” in the o T

face of distractors, but rather that the model chooses one I e I .

of the training sequences to re-execute, even when the g

input image is OOD. Furthermore, Fig. 4 (top) provides - | ;

a global view of similarity scores across all training tra- . 3] . ™
jectories. In the presence of distractors, almost all high- : = ; —
similarity matches are sharply concentrated on a single . -n - -
training trajectory, indicating a surprising OOD default p—— ——
behavior. The diffusion model seems to revert to one or : :

two fallback action sequences when presented with OOD . & . S
images. Even when the input is entirely unrelated to the -—m ——
task, for example, an image of a cat or a dog, the diffu- A A

sion model still produces an action sequence that closely .) . En
resembles one from the training set. We believe those -
results show that the Diffusion Policy’s decision-making Figure 4: Similarity and distance statis-

is largely governed by memory retrieval, rather than by . © '\ oiween inference and trainin o tra-
generalized reasoning over the action space. jectories. Each subplot shows the simi-
larity scores (blue bars) and average dis-
tances (orange lines) between the Diffu-
sion Policy inference and training tra-
jectories. The large gap between the

In both clean and distractor-laden scenarios, the model
demonstrates consistent action replay behavior, support-
ing our hypothesis that its decision-making is fundamen-
tally memory-@riven. AQditional analyses 'and results closest and second-closest neighbors in-
also support this observation (for example, in the InD- i ates strong alignment with specific
Interpolate cases, the Diffusion Policy outputs a trajec- training examples.

tory that closely matches one of the four corresponding

nearest-neighbor training trajectories). See Appendix D for more OOD scenarios.

4 ALT: the Action Lookup Table Policy

Building upon these results, we design a lightweight alternative method while still achieving com-
parable functionality to show the bound of memorization mechanism. Our policy, functioning sim-
ilarly to a lookup table, uses an image encoder trained with contrastive learning as a hash function
to retrieve demonstration trajectories (as shown in Fig. 1). If our hypothesis holds, this method
should deliver performance on par with the Diffusion Policy, while also offering more predictable
fallback behaviors in the presence of out-of-distribution (OOD) inputs, therefore improving safety
and robustness.

4.1 Training Phase

At each timestep, our data consists of three parts: a first-person view from the robot arm end-effector,
a third-person view, and the end-effector pose denoted as D = {(I", If, p;)} Y ,, where I[" and I}
are the hand camera image and third-view image respectively, and p; represents the position and
orientation of the end-effector. We designed a fusion encoder to integrate these inputs into a unified
embedding for contrastive learning. The architecture of this model is illustrated in Fig. 5, and can
be formulated as:

2 = ffusion(fimg(lz‘h)7 fimg(If)a fpose(pi))~ (2)

For visual encoding fi,,4, we employ a pre-trained ResNet-18 [47] as the image encoder backbone.
Trained on large-scale datasets such as ImageNet, this pretrained network is capable of extracting
general-purpose visual features. Leveraging such pre-trained features is beneficial in our setting,
where the available dataset is relatively small.

To perform contrastive learning, we adopt the NT-Xent loss, which requires the fused embeddings
to be L2-normalized z; + BRI ” This ensures that the similarity computation in the embedding

space is stable and consistent.

As shown in Fig. 5, we adopt a contrastive learning framework to extract robust and discrimina-
tive representations from each frame using alignment across multiple modalities. We generate two
different data augmentation views for each sample d; = (I, I}, p;). Specifically, we apply a com-
posed image augmentation pipeline .A; and .A; that transforms each input d; into augmented version

views vgl) and 02(2). We feed vgl) and vl@) into the fusion encoder to obtain their embeddings zi(l)

and zi(2). These two embeddings form a positive pair, and we train the network using the normalized

temperature-scaled cross-entropy (NT-Xent) loss [7] as our contrastive loss function:

& exp (sim(z", 2% /1)
Lo=—— 5 + (1 2), 3)
Bg i exp (sim(z", 21,) /7) (16 2)

where sim(-, -) denotes the cosine
similarity, and both inputs are L2- _c——

normalized prior to computation. o ||~ m

~ Onginal

o
Random

ColorJitter ResizedCrop

The parameter 7 is the tempera-

ture (set as 0.4 in practice), which I L,

coptrol§ th.e shgrpness of the simi- L m = “))

larity distribution, effectively scal- ? Al |
ndom

ing the logits to adjust the con- |/ _Orginal__ColorJifer _ResizedCrop o=

]

1 ResNet18

4.2 Inference Phase oy p y
AT =)

After training the model, we build raw

a low-dimensional feature repre- msa‘%
sentation latent space to support
trajectory matching and prediction [Z] E] RA
during real-time execution. An
overview of the full process is
shown in Fig. 5. Specifically, we
need to encode each frame in the
raw trajectory dataset using our
fusion encoder, and the resulting
embedding tensors are stored as entries in the database. Another important component of the low-
dimensional feature representation database is the trajectory ID and local frame index corresponding
to each input. During real-time inference, the incoming observation, consisting of the current third-
person view, first-person view, and end-effector pose, is encoded into an embedding using the same
fusion encoder. We then perform a search for best cosine similarity against the latent contrastive
learning space to find the most similar stored embedding. If the maximum similarity falls below
a predefined threshold +, the input is considered OOD, and the robot executes a safe fallback be-
havior when the input deviates significantly from the training distribution. Otherwise, the system
retrieves the matched trajectory ID and frame index, enabling real-time trajectory prediction and
policy execution based on the stored demonstrations.

trastive loss sensitivity.

low-dim feature !
representation dataset
) {/_

Figure 5: Contrastive training (top, above the yellow dashed
line) and inference (bottom) phases of our ALT policy. The
inference process has two stages: the green arrows indicate
building the ALT latent space with the trained model, while
blue arrows represent real-time inference.

Table 1: Experimental Results. ID and OOD refer to in-distribution and out-of-distribution cases,
respectively. The first column reports the success rate of the policy in retrieving the correct training
trajectory given the observations. The second column shows the success rate of the policy in com-
pleting the task during a real-robot rollout. The remaining column headers refer to scenarios shown
in Fig. 3. The MIT column denotes the Model Inference Time required for each method in seconds.

Methods ‘ Recall InDs ID-1 OOD1 OOD2 OOD3 OOD4 OOD5 OOD6 OOD7 ‘ MIT

K-D Tree ‘ 100% 63.3% v v v v v X v v ‘ ~0.09
Diffusion Policy ‘ 100% 100% v v v v X X v v ‘ ~2.65
Ours w/p,y=0.9 | 100% v v 00D 00D v] ~0.009
Ours w/op,y=0.9 | 100% - v 00D | ~0.009
Ours w/o p, vy = 0.75 ‘ 100% 100% v v v v v v 00D ‘ ~0.009

4.3 Results

In this section, we conduct two experiments to demonstrate the effectiveness of our proposed ALT
policy and its action memorization mechanism. First, we test the model to assess its ability to en-
able successful task execution on a real robot under in-distribution conditions. Next, we assess the
model’s performance under OOD conditions by introducing various distractors into the environ-
ment. As shown in Fig. 3, we create OOD scenarios by placing additional unseen objects (e.g., tape,
hammer), altering lighting conditions to produce varying shadows, or replacing the third-person
viewpoint with entirely task-irrelevant images (such as pictures of a cat and a dog), while maintain-
ing the cup in its original training position. We compared our method with both a KD-Tree-based
nearest neighbor retrieval and the Diffusion Policy to validate the feasibility of our explicit action
memorization mechanism and demonstrate the advantages of our ALT policy. The results are sum-
marized in Table 1, where a checkmark (v") indicates a successful match with the correct training
action sequence, while a cross (x) indicates an incorrect match. Because our method explicitly de-
tects OOD cases, a green OOD denotes cases where the input is correctly identified as OOD yet the
trajectory match remains accurate, demonstrating robustness. The red OOD indicates that an OOD
input has been detected, and using such an input would result in an incorrect trajectory output.

We observe that in the data-limited training regime, all methods achieve perfect trajectory matching
performance (100%) in all in-distribution cases, demonstrating the effectiveness of the underlying
memorization mechanism. In OOD scenarios, the KD-Tree method is able to correctly retrieve
trajectories in most cases due to its exhaustive nearest neighbor search. However, because it per-
forms pixel-wise comparisons between the input and the raw dataset, its worst-case computational
complexity scales as O(N - d), where N is the number of stored trajectories and d is the data dimen-
sionality. This leads to high computational cost and inference time. In comparison, the Diffusion
Policy performs well in most scenarios but fails under more severe distribution shifts, such as in
0OO0D4 and OODS5. Furthermore, due to the architectural complexity of diffusion models, its model
inference time (MIT) is relatively long. In contrast, our proposed ALT policy achieves comparable
performance with a significantly smaller model size (45.5 MB vs. 5.3 GB for the Diffusion Policy),
and a significantly lower inference time. Although our approach has a complexity of O(N - d), the
embedding dimensionality d is much smaller, leading to a drastic reduction in computation time.

5 Conclusion

In this paper, we propose and validate a counter-intuitive hypothesis explaining the impressive per-
formance of diffusion policies. Rather than generalizing actions, diffusion policies essentially mem-
orize training actions through severe overfitting, effectively acting as implicit action lookup tables.
Our systematic experiments reveal that, even when confronted with unseen InD or completely OOD
inputs, diffusion policies reliably reproduce memorized action sequences rather than generalizing
beyond their training demonstrations. This trend was consistent across simpler MLP architectures
and the more complex image encoder + U-Net backbone used in Diffusion Policy. Guided by this in-
sight, we introduce a lightweight alternative, the ALT policy, explicitly utilizing a contrastive image
encoder as a hash function to retrieve stored trajectories and action indices from memory. When us-
ing a relatively small dataset, our ALT policy achieves performance comparable to the the Diffusion
Policy while requiring only a fraction (0.34%) of its inference time and substantially reduced mem-
ory usage (0.85%), making it particularly suitable for deployment on resource-constrained robots.

6 Limitations

We acknowledge several limitations in our hypothesis and method. All current experiments and
validations have been conducted on small-scale dataset, and it remains uncertain whether the per-
formance can be maintained at the same level when applied to a larger dataset. For example, while
KD-Tree exhibits strong matching performance in small datasets, its computational efficiency may
degrade significantly as the number of entries increases. Similarly, although our ALT method shows
clear advantages in terms of computational complexity for small and moderately sized datasets, its
scalability is also dependent on the scale of training data, unlike the Diffusion Policy (whose model
size is fixed). Therefore, it is likely that our approach will not scale well to large datasets. This
behavior still needs to be fully explored in our future work.

Lastly, another limitation of our approach is its sensitivity to hyperparameters, such as the number of
training epochs, the temperature parameter in the contrastive loss, and the OOD detection threshold.
We observed that careful tuning was required to achieve optimal performance.

Acknowledgments

This project was supported in part by ONR grant N00014-23-1-2354 and the ARPA-H HEART
project. This research was also partly supported by the Singapore Ministry of Education (MOE), as
well as by NUS Overseas Research Immersion Award. We would also like to thank the reviewers
and workshop organizers for their thoughtful comments.

References

[1] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[2] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

[3] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models

with deep language understanding. Advances in neural information processing systems, 35:
36479-36494, 2022.

[4] Wikipedia contributors. Stable diffusion. https://en.wikipedia.org/wiki/Stable_
Diffusion, 2024. Accessed: 2025-04-07.

[5] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy: Generalizable
visuomotor policy learning via simple 3d representations. arXiv preprint arXiv:2403.03954,
2024.

[6] D. Wang, S. Hart, D. Surovik, T. Kelestemur, H. Huang, H. Zhao, M. Yeatman, J. Wang,
R. Walters, and R. Platt. Equivariant diffusion policy. arXiv preprint arXiv:2407.01812, 2024.

[7] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597-1607.
PmLR, 2020.

[8] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International conference on machine learning, pages
8821-8831. Pmlr, 2021.

[9] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi, Z. En-
glish, V. Voleti, A. Letts, et al. Stable video diffusion: Scaling latent video diffusion models to
large datasets. arXiv preprint arXiv:2311.15127, 2023.

https://en.wikipedia.org/wiki/Stable_Diffusion
https://en.wikipedia.org/wiki/Stable_Diffusion

[10] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-
tional conference on machine learning, pages 8162-8171. PMLR, 2021.

[11] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-
thesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684—-10695, 2022.

[12] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 22500-22510, 2023.

[13] Y. Balaji, S. Nah, X. Huang, A. Vahdat, J. Song, Q. Zhang, K. Kreis, M. Aittala, T. Aila,
S. Laine, et al. ediff-i: Text-to-image diffusion models with an ensemble of expert denoisers.
arXiv preprint arXiv:2211.01324, 2022.

[14] C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi. Palette:
Image-to-image diffusion models. In ACM SIGGRAPH 2022 conference proceedings, pages
1-10, 2022.

[15] N. Tumanyan, M. Geyer, S. Bagon, and T. Dekel. Plug-and-play diffusion features for text-
driven image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1921-1930, 2023.

[16] D. Ceylan, C.-H. P. Huang, and N. J. Mitra. Pix2video: Video editing using image diffusion.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 23206—
23217, 2023.

[17] A. Z. Ren, J. Lidard, L. L. Ankile, A. Simeonov, P. Agrawal, A. Majumdar, B. Burch-
fiel, H. Dai, and M. Simchowitz. Diffusion policy policy optimization. arXiv preprint
arXiv:2409.00588, 2024.

[18] G.Lu,Z. Gao, T. Chen, W. Dai, Z. Wang, W. Ding, and Y. Tang. Manicm: Real-time 3d diffu-
sion policy via consistency model for robotic manipulation. arXiv preprint arXiv:2406.01586,
2024.

[19] S.-W. Lee and Y.-L. Kuo. Diff-dagger: Uncertainty estimation with diffusion policy for robotic
manipulation. arXiv preprint arXiv:2410.14868, 2024.

[20] Y. Wang, G. Yin, B. Huang, T. Kelestemur, J. Wang, and Y. Li. Gendp: 3d semantic fields for
category-level generalizable diffusion policy. In 8th Annual Conference on Robot Learning,
volume 2, 2024.

[21] H. Li, Q. Feng, Z. Zheng, J. Feng, and A. Knoll. Language-guided object-centric diffusion
policy for collision-aware robotic manipulation. arXiv preprint arXiv:2407.00451, 2024.

[22] K. Mizuta and K. Leung. Cobl-diffusion: Diffusion-based conditional robot planning in dy-
namic environments using control barrier and lyapunov functions. In 2024 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 13801-13808. 1IEEE,
2024.

[23] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar, and S. Levine. Zero-
shot robotic manipulation with pretrained image-editing diffusion models. arXiv preprint
arXiv:2310.10639, 2023.

[24] G. Kim, T. Kwon, and J. C. Ye. Diffusionclip: Text-guided diffusion models for robust image
manipulation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2426-2435, 2022.

[25] L. Chen, S. Bahl, and D. Pathak. Playfusion: Skill acquisition via diffusion from language-
annotated play. In Conference on Robot Learning, pages 2012-2029. PMLR, 2023.

10

[26] M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song. Xskill: Cross embodiment skill discovery. In
Conference on robot learning, pages 3536-3555. PMLR, 2023.

[27] Y. Shaoul, I. Mishani, S. Vats, J. Li, and M. Likhachev. Multi-robot motion planning with
diffusion models. arXiv preprint arXiv:2410.03072, 2024.

[28] A. Serifi, R. Grandia, E. Knoop, M. Gross, and M. Bicher. Robot motion diffusion model:
Motion generation for robotic characters. In SIGGRAPH Asia 2024 Conference Papers, pages
1-9, 2024.

[29] A. Sridhar, D. Shah, C. Glossop, and S. Levine. Nomad: Goal masked diffusion policies for
navigation and exploration. In 2024 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 63-70. IEEE, 2024.

[30] I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models
to robotics. IEEE Robotics and Automation Letters, 8(7):3956-3963, 2023.

[31] S.-F. Chen, H.-C. Wang, M.-H. Hsu, C.-M. Lai, and S.-H. Sun. Diffusion model-augmented
behavioral cloning. arXiv preprint arXiv:2302.13335, 2023.

[32] X. Gu, C. Du, T. Pang, C. Li, M. Lin, and Y. Wang. On memorization in diffusion models.
arXiv preprint arXiv:2310.02664, 2023.

[33] G. Somepalli, V. Singla, M. Goldblum, J. Geiping, and T. Goldstein. Diffusion art or digital
forgery? investigating data replication in diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6048—-6058, 2023.

[34] N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer, B. Balle, D. Ippolito, and
E. Wallace. Extracting training data from diffusion models. In 32nd USENIX Security Sympo-
sium (USENIX Security 23), pages 5253-5270, 2023.

[35] Z. Xue, S. Deng, Z. Chen, Y. Wang, Z. Yuan, and H. Xu. Demogen: Synthetic demonstration
generation for data-efficient visuomotor policy learning. arXiv preprint arXiv:2502.16932,
2025.

[36] A. Jain, Y. Kobayashi, T. Shibuya, Y. Takida, N. Memon, J. Togelius, and Y. Mitsufuji.
Classifier-free guidance inside the attraction basin may cause memorization. arXiv preprint
arXiv:2411.16738, 2024.

[37] Y. Wen, Y. Liu, C. Chen, and L. Lyu. Detecting, explaining, and mitigating memorization in
diffusion models. In The Tivelfth International Conference on Learning Representations, 2024.

[38] G. Somepalli, V. Singla, M. Goldblum, J. Geiping, and T. Goldstein. Understanding and miti-
gating copying in diffusion models. Advances in Neural Information Processing Systems, 36:
47783-47803, 2023.

[39] Y. Chen, X. Ma, D. Zou, and Y.-G. Jiang. Extracting training data from unconditional diffusion
models. arXiv preprint arXiv:2406.12752, 2024.

[40] D. Hintersdorf, L. Struppek, K. Kersting, A. Dziedzic, and F. Boenisch. Finding nemo: Local-
izing neurons responsible for memorization in diffusion models. Advances in Neural Informa-
tion Processing Systems, 37:88236-88278, 2024.

[41] C. Chen, D. Liu, and C. Xu. Towards memorization-free diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8425-8434,
2024.

[42] J. Ren, Y. Li, S. Zeng, H. Xu, L. Lyu, Y. Xing, and J. Tang. Unveiling and mitigating memo-
rization in text-to-image diffusion models through cross attention. In European Conference on
Computer Vision, pages 340-356. Springer, 2024.

11

[43] J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The surprising effectiveness of
representation learning for visual imitation. arXiv preprint arXiv:2112.01511, 2021.

[44] K. Sridhar, S. Dutta, D. Jayaraman, J. Weimer, and 1. Lee. Memory-consistent neural networks
for imitation learning. arXiv preprint arXiv:2310.06171, 2023.

[45] K. Sridhar, S. Dutta, D. Jayaraman, and I. Lee. Regent: A retrieval-augmented generalist agent
that can act in-context in new environments. arXiv preprint arXiv:2412.04759, 2024.

[46] G. Loaiza-Ganem, B. L. Ross, J. C. Cresswell, and A. L. Caterini. Diagnosing and fixing
manifold overfitting in deep generative models. arXiv preprint arXiv:2204.07172, 2022.

[47] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778,
2016.

[48] T.Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[49] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators. In 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 12156-12163. IEEE, 2024.

[50] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. arXiv preprint
arXiv:2402.10329, 2024.

12

A Data Collection Pipeline

A.1 Robot Arm Data Collection

Choosing an efficient, cheap, and safe method for data collection, crucial for robot imitation learn-
ing, remains an open problem. One of the most common solutions is to use remote controllers, such
as VR, 3D space mouse, or smartphones. However, due to high latency and indirect operation, the
data collected in this way is often messy and low-quality, making it difficult to accurately capture
human skills. Fully synchronized systems with human operators, such as ALOHA [48] and GELLO
[49], can solve this problem by allowing humans to teleoperate the robot in a more intuitive way
while tracking the actions of this system in real time. But, these methods require an additional spe-
cialized puppeting system, which incurs an additional cost. In comparison, UMI-gripper [50] is a
cheap, intuitive, and robot-agnostic solution for data collection. Yet, it cannot be used in our work as
it is incompatible with situations where third-person perspectives are necessary, and limits the robot
to a single manipulator that requires an expensive hardware interface. Thus, to collect the necessary
data, we utilized a motion capture data collection method, MoDA, to capture high-quality action
sequences with low latency.

P —— N - Synchronized Data

| e | O
M~ ==L O] i

X S e e e e a2
Figure 6: The data collection pipeline of MoDA (Motion-captured Démonstration Tor Arms). The
green arrows indicate the process of aligning the relative positions of human’s hand and the robotic
arm, and the blue arrows indicate the data of collecting the robotic arm.

-—
¢
&
¢
~

A.2 Motion-captured Demonstration for Arms

Data collection plays a critical role in imitation learning, as the quality and generalizability of the
learned policy depends heavily on the fidelity of the demonstrations. In this work, we introduce
MoDA (Motion-captured Demonstration for Arms), a streamlined and cost-effective data collection
pipeline built upon motion capture (MoCap) systems that are commonly available in robotics labo-
ratories (see Fig. 6). This pipeline provides high-fidelity human demonstrations for the robot, where
a human demonstrator performs the cup grasping motion while wearing specialized trackers, and
the system translates these motions into corresponding joint targets for a 6-DoF robot arm. MoDA
can be extended to any other robot arm system with almost negligible cost, because our data col-
lection pipeline is both task-agnostic and robot-agnostic. To collect the necessary expert training
demonstration data, we use an OptiTrack system to track the 6-DoF pose of the human palm in
real time and map it directly to the end-effector of a robotic arm. Simultaneously, we estimate the
inter-finger distance to control the opening and closing of the gripper, thereby allowing us to sig-
nal when to grasp the cup. We then synchronize these actions with the corresponding in-hand and
3rd person camera views. Compared to systems such as ALOHA, which rely on specialized and
expensive teleoperation interfaces, our method does not need any active electronics or specialized
wearables. Instead, the setup requires only a few 3D-printed brackets to attach passive IR reflective
markers to the palm and fingers, making it an extremely low-cost and accessible solution when a
MoCap system is already available in the lab. Furthermore, unlike UMI Gripper, which requires
direct human interaction during data collection, our setup allows human demonstrators to operate
out of frame, thereby ensuring clean third-person video demonstrations. Compared to systems such
as ALOHA, which rely on external equipment like teleoperation interfaces or instrumented gloves,

13

our approach avoids the need for expensive or specialized hardware. In contrast to the UMI Gripper
generated data, which often involves complex scenes with human demonstrators visibly present in
the frame, our setup enables the collection of clean third-person video demonstrations where human
demonstrators are minimally visible. This is particularly beneficial for training diffusion policies,
as it minimizes noise and ambiguity in both the action and visual observation spaces, reducing the
risk of learning failures due to poor-quality data. In summary, unlike alternative setups that rely on
specialized grippers, force sensors, or teleoperation rigs, our system can be assembled in-house with
minimal resources and negligible additional expense. Moreover, MoDA is not only task-agnostic,
but also robot-agnostic, it does not rely on any specific type or model of robotic arm, making it
highly adaptable across different hardware platforms and manipulation scenarios. This flexibility
enables seamless integration into a wide range of experimental setups with minimal modification.

B Early Stopping Experiment

To further support our hypothesis, we conducted an early stopping experiment. Early stopping is a
common technique used to prevent potential overfitting during training, with the goal of improving a
model’s generalization ability. In this experiment, we reserved one-third of the dataset as a validation
set and used the remaining two-thirds for training. During training, we recorded both the validation
loss and the mean squared error (MSE) between the predicted actions and ground-truth actions on
the training set. The first metric, validation loss, is used to determine when to stop training, thus
preserving the model version with the best generalization. The second metric, actions MSE on
training set, is used to monitor the model’s performance on the training set. As shown in Fig. 7,
although the validation loss reaches its minimum at a certain point, the corresponding action MSE
remains high, around 1800. This result indicates that overfitting a diffusion policy model to the
training data is a necessary requirement for producing accurate trajectories, as choosing the best
model (chosen based on the validation loss) results in a policy that cannot reproduce the correct
in-distribution trajectories.

Validation Loss Actions MSE

action_mse=1871.69

Figure 7: Early Stopping Experiment. The validation loss (left) reaches its minimum around step
650 before beginning to rise, indicating the onset of overfitting. However, at this point, the training
action MSE (right) has not yet converged and remains as high as 1800. This suggests that more
extensive training is necessary for the Diffusion Policy to output effective actions, even the input is
in-distribution.

C Diffusion Mechanism Analysis

In this section, we present additional examples to further illustrate the behavior of diffusion models
under varying model capacities and dataset scales, as discussed in Section 3.2. Specifically, we
examine three additional 2D manifolds: an ellipse 8, a rectangle 9 and a heart shape 10.

Consistent with the observations from Section 3.2, low-capacity models trained on small datasets fail
to accurately reconstruct manifolds, often producing noisy or collapsed outputs. Even when trained
on large datasets, these models are limited by their representational capacity: simple shapes like
ellipses can be approximated reasonably well (albeit still worse than with high-capacity models),
more complex structures suffer significant distortion. For example, due to limited model expressive-

14

ness, low-capacity models approximate the heart shape as a crude triangle and smooth out the sharp
corners of the rectangle.

Memorization behaviors are obvious when high-capacity models are trained on small datasets. In-
terestingly, although global structure reconstruction fails, local smoothness can still emerge. For
instance, while the overall manifold may not be recovered, segments of an ellipse can still be accu-
rately captured. This suggests that memorization in diffusion models is not absolute: when the train-
ing data is locally dense, models may still interpolate between nearby points, preserving some local
structure. However, when larger gaps exist between segments, interpolation fails, and the model in-
stead memorizes discrete samples without capturing the broader underlying manifold. When high-
capacity models are instead trained on large datasets, all manifolds are accurately reconstructed,
almost perfectly matching the true geometry. In practice, though, acquiring such large-scale ex-
pert demonstrations that sufficiently cover the state space remains a significant challenge in robotic
manipulation tasks.

Small Data + Simple Model (3k demos, 16x2) Big Data + Simple Model (100k demos, 16x2)
Input Points Input Points
Ground Truth Ground Truth

Small Data + Complex Model (3k demos, 1024x10) Big Data + Complex Model (100k demos, 1024x10)

Input Points Input Points
Ground Truth Ground Truth

P _emtEEERa,

Figure 8: Training a generative model from 2D points on a ellipse-shaped 1D manifold. Orange
points indicate training samples, gray points are noisy inputs, blue points are denoised outputs, and
cyan lines shows the denoising directions.

15

Small Data + Simple Model (3k demos, 16x2) Big Data + Simple Model (100k demos, 16x2)

N Z= 4 -
w N
i L ' o ®

SRETTRR N

S das 2 aan ..J
D

e

Small Data + Complex Model (3k demos, 1024x10) Big Data + Complex Model (100k demos, 1024x10)

Input Points Input Points
Ground Truth Ground Truth
% R ’
i
i
1
|
| !
g !
| {
ke 4 LR

Figure 9: Training a generative model from 2D points on a rectangle-shaped 1D manifold.

D Additional Results and Analysis

D.1 Real-World

Fig. 11 Shows the trajectory similarity between the predicted trajectory and the nearest ground-truth
trajectory for the real-world cup placement experiment. The distance to the nearest neighbor (yellow
polyline) is near zero (implying high similarity), while the distance to the second nearest trajectory
is substantially larger, resulting in a similarity score that is close to 1 (the blue bar).

Fig. 12 presents additional supplementary visualization of the trajectory matching results under in-
distribution conditions. In the left panels, for each case, the first blue bar represents the similarity
score of the most closely matched training trajectory, while the second blue bar the similarity score
of second closest trajectory. The consistently high top-1 similarity scores, combined with significant
gaps to the second closest match, indicate clear and confident retrieval from the training data. As
shown in the right panels, the closest trajectory (blue) in the training dataset almost perfectly over-
laps with the inference trajectory in all examples, showing that the Diffusion Policy can accurately
retrieve the correct demonstration when the input remains within the training distribution. These re-
sults strongly support our hypothesis that the Diffusion Policy depends on a memory-based retrieval
mechanism to achieve its compelling results. The sharp similarity peaks and trajectory overlaps
provide strong evidence that the model is not merely approximating the behavior, but is explicitly
recalling memorized training trajectories under in-distribution conditions.

We further analyzed several additional out-of-distribution (OOD) scenarios, including: placing the
cup evenly between three or four in-distribution positions (as shown in Fig. 13), gradually moving
the cup out of the field of view from the edge of an in-distribution position (Fig. 14), and slowly tran-
sitioning the cup between two distant in-distribution positions (Fig. 15). It is evident that under these
OOD conditions, the Diffusion Policy continues to produce trajectories that closely resemble those
seen during training. These experimental results provide further support for our core hypothesis
regarding the memory-driven behavior of diffusion policies.

16

Small Data + Simple Model (3k demos, 16x2) Big Data + Simple Model (100k demos, 16x2)

Input Points Input Points
Ground Truth Ground Truth

Small Data + Complex Model (3k demos, 1024x10) Big Data + Complex Model (100k demos, 1024x10)

Input Points Input Points
Ground Truth Ground Truth

Figure 11: Similarity and distance statistics between inference and training trajectories. Each sub-
plot shows the similarity scores (blue bars) and average distances (orange lines) between the Diffu-
sion Policy inference and training trajectories. The large gap between the closest and second-closest
neighbors indicates strong alignment with specific training examples.

D.2 Simulations

We also see similar results for the two different simulated manipulation tasks: Can, and Square. Both
tasks are drawn from the Robomimic simulation benchmark and contain 196 training trajectories
and four validation trajectories. In the Can task, the model is taught to transfer a can from one
table to another table while in the “Square” task, the model is trained to place a square ring on a
square peg. We observed that these experiments also display action memorization (see Fig. 16 and
Fig. 20), as each training observation was found to closely align with the corresponding ground-truth

17

demonstration. We observe similar memorization when examining the diffusion policy’s rollouts
from observations taken from the validation set (see Figs. 17 through 19, and Figs. 21 through 23)
for can and square experiments respectively. Overall, in the Can task, we observed an average
similarity score of 0.88 and an average deviation of 2.0 mm. In comparison, in the “Square” task,
we observe a similarity score of 0.82 with an average deviation of 4.4 mm.

18

g By e
8 e by Soater
Conant Ty P
o Dot Sy e
= © Conent Wy Maschest

® Ot Ty 1Mot

Lt
e

e
| xe

. . h
- = P

. ™

WPt Tyl
o Twget Yy [Scatter)
s Ty 1V}
ol Ol Dy (Tl
© Closmt Wy (Matchad)
® I Oaadl Dy (Ml he

s
P (m -

Bepet Ty e
—_— a o Taepel D M alen)

Conent Yy NN
vl Chned Y g 1Vl
® Cuonest Wiy IMeched)
® Ok Yy 1MW)
St
(n o

s]

v -
..yi:::,aﬁ 3
L A T S g

k -~ '.

I NG
D I
)
N

r 4

-

-

» |

*
——t —

1S L RS e -

wo M4 Mo Mo Ro e 1% 3
e

Figure 12: The Diffusion Policy inference result analysis under in-distribution conditions. On the
left, each subplot shows the similarity distribution between the query inference trajectory and all
stored trajectories in the database. On the right, the three figures provide 3D visualizations of repre-
sentative matching cases. The green line represents the inference trajectory, while the blue and red
dots show the closest and second-closest trajectories retrieved from the training set, respectively.

19

Figure 13: Inference trajectory analysis when the cup is placed between multiple In-distribution
positions.

20

Figure 14: Inference trajectory analysis when the cup is gradually moved out of view from an in-

distribution boundary.

Figure 15: Inference ‘trajectory analysis when the cup is gradually moved between two distant in-
distribution positions.

21

Similarity to Train Trajecteries (Per-Rallout Neemalized)

Notet 03 Wt o1 ot 03 ot 03 e

-

i
H
H
H

B
——
=
==

ity Lore

L NARRNNANT) (0 NANRNAN) (HD NNANN | (Wpe weepE

PR POOOSDBO NS B R PR Rk CooOBosl s
st 03 - o 7 L —
e an
e - - o
.
§ o i 1 i §
] * x x 3
L L] i

n-lll.-l~—l-l— M _I_._I.IIILII_ lllll_._l_._l_ __._Ill.I.IIL
LOODlL bl B LD PLb BB L CLODPOBbO00 LR

Figure 16: A subset of the total analysis done for the roll-outs of a Diffusion Policy model from
the training set with respect to all ground-truth training trajectories. The model was trained on the
“Can” pickup benchmark.

Similarity to Ground-Truth Trajectories (Per-Rollout Normalized)

Pobous #0 oot #1

10

ose
o8
o
oa
o2
00 ——
-0z

* L < <

10

o

o

SRy s

o2

-]
.. . I .

P & <& o P PS & o

Figure 17: Analysis of a Diffusion Policy model roll-outs on the validation set with respect to all
ground-truth validation trajectories. The model was trained on the “Can” pickup benchmark.

22

Similarity 10 Ground. Truth Trajectones (Per-Rollout Normalized)

Ain €y e
Sty e

—

) _
-3

S €y o
[PRSEP -,

RS B I
Figure 18: Analysis of a Diffusion Policy model roll-outs on the validation set with respect to both

the ground-truth training and validation trajectories. The model was trained on the “Can” pickup
benchmark.

Simiarey to Ground Truth Trajectories (Per-Rolout Normalized)

e
.

v oo
.

Py

Figure 19: Analysis of a Diffusion Policy model roll-outs on the validation set with respect to the
ground-truth training trajectories. The model was trained on the “Can” pickup benchmark.

23

Tty Toswe

Similarity to Train Trajectories (Per-Roliout Normalized)

]

[

ey e

eo.«aoo«-aoe

EEee—p—

-.2

A

COCDO ol

£

aoooooaaoe

LR R

Smarry S

peewverapu—

PR R Y oo\«e.-e«coa

NRRRARR N R

[—d et
"
-

v

T ety Mewe

L R OO Oel 0

pe———

0\\(‘«‘\'0~'1‘

pe

LR

ARRRAR "R

Py

- e

Figure 20: A subset of the total analysis done for the roll-outs of a Diffusion Policy model from
the training set with respect to all ground-truth training trajectories. The model was trained on the
“Square” pickup benchmark.

Sty o,

-3

Simiarty to Train Trajectones (Per-Rollowt Normalred)

Figure 21 :oAnalysis of a Diffusi(;}l Policy mgdel roll-outs on validation set with refspect to alloground-
truth validation trajectories. The model was trained on the “Square” benchmark.

24

Similarny to Train Trajectonies (PerRoliout Normalzed)

ity e
°

"“
.

W w3

3
i . i
. {
) -—.— '
.. Poa

Figure 22: Analysis of a Diffusion Policy model roll-outs on validation set with respect to both the
ground-truth training and validation trajectories. The model was trained on the “Square” pickup
benchmark.

y
s

Sumilarity to Train Trajectories (Pee-Rolout Normalzed)

.0 At #1

Figure 23: Analysis of a Diffusion Policy model roll-outs on training set with respect to all ground-
truth training trajectories. The model was trained on the “Square” benchmark.

25

	Introduction
	Prior Work
	Diffusion Policy Analysis
	Preliminaries
	Diffusion Model Generalization Regimes
	Hypothesis and Experiments
	Results

	ALT: the Action Lookup Table Policy
	Training Phase
	Inference Phase
	Results

	Conclusion
	Limitations
	Data Collection Pipeline
	Robot Arm Data Collection
	Motion-captured Demonstration for Arms

	Early Stopping Experiment
	Diffusion Mechanism Analysis
	Additional Results and Analysis
	Real-World
	Simulations

