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Abstract: We study the task of language-conditioned pick and place in clutter,
where a robot should grasp a target object in open clutter and move it to a spec-
ified place. Some approaches learn end-to-end policies with features from vision
foundation models, requiring large datasets. Others combine foundation models
in a zero-shot setting, suffering from cascading errors. In addition, they primarily
leverage vision and language foundation models, focusing less on action priors.
In this paper, we aim to develop an effective policy by integrating foundation pri-
ors from vision, language, and action. We propose A2, an action prior alignment
method that aligns unconditioned action priors with 3D vision-language priors by
learning one attention layer. The alignment formulation enables our policy to train
with less data and preserve zero-shot generalization capabilities. We show that a
shared policy for pick and place actions enhances performance for each task, and
introduce a policy adaptation scheme to accommodate the multi-modal nature of
actions. Extensive experiments in simulation and the real-world show that our pol-
icy achieves higher task success rates with fewer steps, effectively generalizing to
unseen objects and language instructions.

Keywords: Language-conditioned Pick and Place, Action Prior Alignment, Foun-
dation Models for Robotic Manipulation
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Figure 1: Compared to previous methods (a) clas-
sic end-to-end policies and (b) modular systems,
our method integrates foundation priors from vi-
sion, language, and action through alignment by
one attention layer, which enables more efficient
policy learning and better task performance.

The ability to pick and place objects is essential
for robotic manipulation [1, 2, 3, 4, 5, 6]. Con-
sider a scenario where a robot is commanded
with language instructions to grasp a target ob-
ject in open clutter, and move it to a speci-
fied place. The target object may be partially
or fully occluded, posing challenges for ob-
ject grounding and grasping. In such scenarios,
multiple pick and place actions may be needed
to clear obstacles for object rearrangement.

A common way to construct a policy for such
tasks is to predict 6-DoF actions directly from
raw sensory information, as in classic end-to-
end policies. Recently, these policies have
achieved promising performances by incorpo-
rating features of pre-trained foundation models, e.g., vision-language models (VLM) and large
language models (LLM) [7, 8, 9, 10, 11, 12]. However, they require large amounts of demonstration
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data for policy learning, particularly for tasks involving cluttered environments. In addition, one has
to deal with generalization issues to deploy these policies in real-world applications.

In contrast, other methods harness the zero-shot generalization capabilities of foundation models by
developing modular systems. Many works investigate visual representations for object grounding,
followed by rule-based action planners for object manipulation [13, 14, 15, 16, 17, 18]. For exam-
ple, LERF-TOGO [19] builds 3D scene representations by distilling features from vision-language
models, then performs object grounding to filter candidate actions generated by an action foundation
model. These approaches are mostly learning-free, showcase zero-shot generalization, and utilize
action candidates as priors. Nevertheless, they demand high accuracy in visual grounding, which
remains challenging in cluttered settings. Even with correct grounding, the target in clutter may
be ungraspable. Some works employ large language models as planners to decide the object grasp
order in clutter, but still suffer from cascading errors across individual modules [20, 21, 22].

In general, end-to-end methods require large datasets to effectively learn a policy with substantial
network parameters and pay less attention to action priors, whereas modular systems struggle with
cascading errors when combining several foundation models in a zero-shot setting. Considering that
action foundation models can provide action priors that are unconditioned on specific tasks, we raise
a question: Given unconditioned action priors, is there a policy that can improve performance while
learning fewer network parameters?

To leverage unconditioned action priors in specific tasks, we adopt the idea of alignment with a
reward model, inspired by the RLHF technique in large language model training [23]. Taking action
foundation models as generators, we build a probabilistic policy upon the generated actions for
reward alignment. For specific pick and place tasks, the reward model can be defined as a simple
binary function. Then, expert demonstrations can be extended into state-action pairs with binary
scores. In this way, we can learn the policy that aligns with the task reward by maximizing the
probabilities of demonstrated actions through imitation learning.

Guided by the insights, we propose A2, an Action Prior Alignment method that aligns unconditioned
action priors based on task-conditioned vision-language priors by learning one attention layer (Fig-
ure 1). Action foundation models, such as GraspNet [24], generate action candidates, providing
unconditioned action priors and largely reducing the action space. For vision and language input,
we construct 3D zero-shot representations combining vision-language foundation priors from the
vision-language model MaskCLIP [25]. Based on these priors, we perform alignment by a cross-
attention layer to predict action probabilities for planning. In this way, our policy is to learn one-
dimensional probabilities over action priors, requiring less training data and preserving zero-shot
generalization capabilities. To learn such a policy, we construct a score-based dataset from expert
demonstrations. We use shared network parameters for pick and place tasks, improving performance
simultaneously for each task. We also propose a fast policy adaptation scheme, allowing fine-tuning
for action multi-modality modeling. At inference time, our policy aligns actions across the scene to
predict a sequence of grasps to remove obstacles for target grasping, and ultimately place the target
at the specified location. A wide range of experiments in both simulation and real-world settings
show that our policy achieves higher task success rates with fewer planning steps, with zero-shot
generalization to unseen objects and language instructions. Our main contributions are:

• We propose A2, an efficient action prior alignment method that allows learning one attention
layer for language-conditioned pick and place in clutter.

• We leverage the vision-language model to construct 3D vision-language priors that indicate task
information with zero-shot generalization capability.

• We conduct alignment of unconditioned action priors based on vision-language priors from
foundation models, and develop fast policy adaptation for action multi-modality modeling.

• The learned policy is evaluated on a series of scenarios with seen and unseen objects and lan-
guage instructions in both simulated and real-world settings, of which the results validate the
effectiveness and generalization.
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Figure 2: Overview. Given the language instruction and RGB-D image(s), the vision-language
model MaskCLIP [25] extracts dense patch-level features, which are projected into 3D represen-
tations, including a feature cloud, a similarity cloud, and a point cloud. In addition, the action
foundation model generates action candidates. Based on these foundation priors, our policy con-
ducts alignment for action planning.

2 Overview

Unconditioned Action Priors based Policy. Given the RGB-D image(s) I = {Ii}i=0,1,...,M and
the language instruction L, we leverage foundation models to extract vision, language, and action
priors. Consider an action foundation model that generates L candidate actions from image(s) as
action priors AL(I) = {ak}k=0,1,...,L, L generally has a controllable upper limit. These priors,
distilled from a wide range of unconditioned data, provide feasible action patterns for downstream
tasks and largely narrow the action space. Upon these priors, we construct a probabilistic policy π.

π (a|I,L) =
L∑

k=1

ω (ak|I,L) δ (a− ak)

s.t.

L∑
k=1

ω (ak|I,L) = 1

(1)

where ω (ak|I,L) is the probability of ak conditioned on the vision and language information.

Alignment with Reward. Modular systems obtain ω with rule-based filtering upon visual ground-
ing results, which demands high visual accuracy. Instead, we propose to learn the ω to align un-
conditioned action priors based on vision-language priors. In this way, our policy is to learn one-
dimensional probabilities over action priors, largely alleviating data demands. Consider this align-
ment problem via RL objective, let r(a, I,L) denote the reward function, then the optimal policy is
to maximize the expected sum of future rewards. For pick and place tasks, r(a, I,L) can be easily
defined as

r(a, I,L) =
{
1, pick or place successfully
0, otherwise

(2)

Alignment by Imitation Learning. By employing expert planners, we can collect demonstrations
D = {Id,Ld, ad}, where ad ∈ AL(Id). Then we have r(ad, Id,Ld) = 1. Therefore, we can
augment each demonstration into score-based samples by labeling ad as 1, with the remaining ones
in Ad as 0. In this way, we can learn the policy π that aligns with the reward by maximizing the
likelihood of ad for Id,Ld through imitation learning.

max
ad∈AL(Id)

ω (ad|Id,Ld) (3)

Architecture of A2. Figure 2 presents our pipeline. For vision-language input, our method extracts
dense patch-level features using MaskCLIP [25]. Then the features are projected into 3D represen-
tations, including a 3D point cloud, a 3D feature cloud, and a 3D similarity cloud. Each coordinate
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in the point cloud corresponds to a visual feature and a task-relevant vision-language similarity.
Additionally, we utilize the action foundation model to yield a set of action candidates. Based on
the vision, language, and action priors, we propose to conduct action prior alignment for action
planning. We first sample points with higher similarity to create a more compact representation.
Then, a cross-attention transformer takes action features as queries, 3D position features as keys,
and 3D vision-language features as values to align action priors with vision-language information.
The output fusion features are fed into a decoder to get the probabilities of candidate actions.

As a system, our policy first receives the language instruction to grasp the target object, and predicts
a sequence of grasp actions by closed-loop action alignment. If the target object is not grasped, our
policy will remove the grasped obstacles and proceed regrasping. Once the target is grasped, our
policy takes the language instruction of placement along with the grasped object for place prediction,
finally placing the grasped object in the assigned location.

3 Foundation Priors

3.1 3D Vision-Language Priors

We leverage the zero-shot generalization capability of foundation models to construct 3D visual
representations that convey semantic and task-relevant information.

Generalizable Visual-Language Features. We extract features through the pre-trained vision-
language model CLIP [26] that maps visual and language embeddings by training on millions of
image-text data. However, CLIP originally generates image-level features. To obtain denser fea-
tures, we apply MaskCLIP [25] reparameterization trick to extract patch-level features from CLIP.
To further get more fine-grained features, we crop each RGB image into several sub-images to ex-
tract patch-level features, and concatenate them together to form the final visual feature map.

3D Representations. Given RGB-D image(s) I = {Ii}i=0,1,...,M from one or more cameras with
fixed viewpoints, we first extract a 3D point cloud p within the workspace using the camera param-
eters. For each point pj of p, we project it back to ith camera viewpoint as the pixel ui

j , and get its
visual feature f i

j by interpolation. Following [18], we compute weights for each camera according
to the visibility and distance of pj in the corresponding camera. Finally, we fuse features from all
camera viewpoints using a weighted sum, denoted as fj . More details can be accessed in Appendix.

3D Feature Cloud. Each point pj within the workspace paired with its feature fj , forms the 3D
feature cloud f . This representation implies the visual information of the scene, which is semantic
and zero-shot generalizable.

3D Similarity Cloud. To represent the task-relevant information, we further utilize the vision-
language similarity property of MaskCLIP. Specifically, the language instruction is encoded by the
MaskCLIP text encoder. For each point pj , we compute the cosine similarity between the language
embedding and the visual feature fj to get a similarity value sj , resulting in a 3D similarity cloud s.
This representation reflects the degree of task relevance of each point.

3.2 Unconditioned Action Priors

Action Foundation Models. We employ different action foundation models to yield candidate
actions for pick and place respectively. For object picking, we adopt the pre-trained GraspNet [24]
to generate 6-DoF grasp poses that demonstrate feasible grasp actions for all objects across the
whole scene. For object placement, we first obtain all the object region proposals, then place poses
are sampled in and around each object region without overlapping with each other.

Action Candidates. By utilizing action foundation models, we yield a set of L candidate actions
AL(I) = {ak}k=0,1,...,L. L generally has a controllable upper limit and is variable in different
scenarios. These candidate actions provide unconditioned priors of the way to manipulate objects
and largely narrow the action space into a limited set, facilitating efficient policy learning.
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4 Action Prior Alignment

Based on foundation priors vision, language, and action, we propose to conduct action prior align-
ment by learning one attention layer.

4.1 Alignment Architecture

Considering that directly taking complete 3D representations is sample-inefficient, we first conduct
prioritized sampling to get a more compact representation. To be specific, we sample N points
with higher similarities to generate sampled 3D representations pN , fN and sN . Note that N is a
hyperparameter closely related to the total number of 3D points in the representations. Empirically,
we sample half of the points from the workspace. Given the sampled 3D visual representations
and the generated action candidates, we perform action prior alignment via cross-attention to obtain
fusion features, followed by a decoder to predict the action probabilities. Finally, the action with the
highest probability is selected for execution.

4.2 Cross Attention

We propose to align unconditioned action priors based on task-conditioned vision-language pri-
ors. To be specific, we employ transformer’s attention mechanism [27]: Attention(Q,K, V ) =
Softmax

(
QKT

)
V , where Q,K, V denote query, key and value respectively.

We weight the 3D visual features fN with the similarity values sN , which capture the vision-
language information. We encode L action pose features by an MLP to generate action features.
The 3D points pN are projected into a nonlinear space using positional embedding as in [28], fol-
lowed by an MLP to encode position features. To align action features based on vision-language
information, the cross-attention transformer takes L action pose features as queries, N position fea-
tures as keys, and N vision-language features as values, outputting L fusion features FL. We use
RoPE [29] to encode relative position embeddings for keys and values.

Q = MLP1 (AL) , K = RoPE (MLP2 (pN )) , V = RoPE (fN ◦ sN ) (4)

4.3 Policy Learning

Shared Policy for Pick and Place. We train the policy with demonstration data collected by model-
based expert planners, and propose to train a policy for pick and place with shared parameters. That
is, after generating the 3D representations and candidate actions, pick and place share the same
information for action alignment. This is because there is strong common information between pick
and place actions. In cluttered scenes, both pick and place tasks require the policy to focus on the
regions close to the target.

Policy Adaptation for Multi-modality. For both pick and place tasks, the action distribution is
inherently multi-modal. In particular, for place tasks, the multi-modal characteristic is more signifi-
cant, e.g. when placing around an object, there may be several feasible actions. However, due to the
difficulty of executing all actions in each step, the demonstration data labels only one action as the
ground truth. This potentially misleads the policy and degenerates the multi-modality modeling of
actions. To address this issue, we propose a policy adaptation scheme using a residual block:

ΩL = Decoder (FL) , Ωr
L = Decoderr (FL) , Ω′

L = αΩL + (1− α)Ωr
L (5)

where ΩL = {ωk}Lk=1 represents the original predicted action probabilities of AL, Ωr
L is the residual

output of probabilities, and Ω′
L is the weighted sum of ΩL and Ωr

L. By fine-tuning the policy with a
small set of multi-labeled data of place tasks, we can further improve the policy performance.

5 Experiments

In this section, we carry out a series of experiments to evaluate our policy. The goals of the experi-
ments are: 1) to validate the effectiveness of our policy in both language-conditioned pick and place
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Figure 4: Ablation studies of shared policy.

Category Method Seen Unseen

Pick

LERF-TOGO 83.3/3.37 76.0/2.01
GraspSplats 58.0/2.05 37.3/1.67

VLG 74.3/4.11 78.7/3.98
ThinkGrasp 84.7/2.55 57.3/4.11
A2-G-Pick 83.3/3.78 84.7/3.85

A2 95.3/2.55 97.3/2.57

Place

VLP 40.0 20.0
A2-G-Place 32.3 29.3

A2 89.3 74.0
A2-PA 89.0 76.0

Pick-n-Place

Act3D 0.0/– 0.0/–
RVT-2 0.0/– 0.0/–
Act3D† 0.0/– 0.0/–
RVT-2† 0.83/4.00 0.0/–

3D Diffuser† 1.67/6.13 0.0/–
A2-G 30.7/2.42 28.3/2.00

A2 87.5/2.45 71.7/3.02
A2-PA 91.3/2.06 76.7/3.22

* Metrics of pick and pick-n-place are presented as Task Suc-
cess Rate / Planning Steps.

Table 1: Simulation Results on All Categories

tasks in clutter; 2) to demonstrate the efficiency of our policy; 3) to validate the zero-shot general-
ization performance of our policy on unseen objects and language instructions; 4) to test whether
our policy can successfully transfer to the real world.

5.1 Experimental Setup

Test Settings. We first conduct test experiments in simulation with a series of test cases, which
can be categorized into three folds: pick, place, and pick-n-place. Each category includes cases of
arrangements with both seen and unseen objects during A2 training. For place, some cases of unseen
objects pair with unseen relations. Example cases are visualized in Figure 3.

Evaluation Metrics. We evaluate the methods with a series of test cases. Each test contains y = 15
runs measured with 2 metrics:

• Task Success Rate: the average percentage of task success rate over y test runs. For pick, if the
robot picks up the target object within 8 action attempts, the task is considered successful and
completed. For place, the robot succeeds if placing the object in the correct region with 1 action
attempt. For pick-n-place, the robot should simultaneously succeed in both pick and place tasks.

• Planning Steps: the average pick or pick-n-place number per task completion. Note that this
metric is only evaluated in the categories of pick and pick-n-place.

5.2 Baselines

We compare our policy A2 to various baselines, including both modular systems and classic end-
to-end policies. For modular systems, we compare to neural field based pick policies (LERF-
TOGO [19], GraspSplats [14]), object-centric pick and place polices (VLG [30], ThinkGrasp [22]
for picking and VLP [31] for placing), and 3D visual grounding pick and place policies. For end-to-
end policies, we compare to 3D policies Act3D [11], RVT-2 [12] and 3D Diffuser [32].

5.3 Comparison to Baselines

Pick. Results in Table 1 indicate that our policy outperforms all baselines. Although LERF-TOGO
and GraspSplats can obtain fine-grained scene representations via time-consuming (>1min) test-
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time training, the grounding accuracy is hindered in clutter, leading to cascaded errors in action
planning. Therefore, they demonstrate unsatisfactory performances. Other methods support real-
time inference. VLG gets object awareness by incorporating object-centric representation, but suf-
fers from detection noise. ThinkGrasp utilizes GPT-4o as the planner based on object-centric crops,
which inherits the reasoning capability of LLM. Nevertheless, it operates in a stage-by-stage man-
ner, affected by the accuracy of segmentation and LLM planning, resulting in more planning steps
for some fuzzy concepts. A2-G-Pick relies on the similarity cloud for grounding, and ignores the
probability of moving away obstacles. In contrast, action prior alignment enables our policy to di-
rectly score actions based on task-relevant vision-language features. In this way, our policy avoids
over-reliance on accurate visual representations and can remove obstacles for target grasping.

Place. We show the performances of place with seen and unseen objects in Table 1, further demon-
strating the advantages of our action prior alignment paradigm. The performance of VLP depends
heavily on the capability of CLIP, which frequently fails when facing similar visual information or
text words. A2-G-Place struggles to distinguish “in” and “around” relation, as it directly grounds
the highest point that fits both requirements of reference and relation.

Pick-n-Place. As shown in Table 1, Act3D, RVT-2 fail in all cases when employing their pre-trained
models, revealing poor generalization to novel objects, backgrounds, and camera viewpoints. Even
when trained on our dataset, Act3D†, RVT-2†, and 3D Diffuser† still struggle to acquire the neces-
sary information to complete tasks, likely due to insufficient data quantity. By further leveraging
action foundation priors and aligning them based on zero-shot vision-language priors, our policy
achieves higher efficiency and generalization.

Generalization. All policies are tested with objects seen and unseen during A2 training. Overall, our
policy achieves the highest task success rates in unseen objects, particularly excelling in pick tasks.
Thanks to our design of action prior alignment desgin, we effectively preserve the generalization
capabilities of the foundation models to a large extent.

5.4 Ablation Studies

We conduct extensive ablation studies to elucidate the effectiveness of individual designs within our
method. For a fair comparison, all the learning-based methods are trained with the same process.

Shared Policy. We first test the effectiveness of the shared policy for pick and place. Let Pick-Only
denote the policy trained only with pick samples and Place-Only as the policy trained only with
place samples. Results in Figure 4 demonstrate the shared policy boosts performances in both tasks
by a large margin. This indicates strong commonalities between pick and place tasks, as both require
focus on or around the target region.

Policy Adaptation. To validate the policy adaptation scheme, we compare the performances of our
policy before (A2) and after adaptation (namely A2-PA) with only 100 multi-labeled place sam-
ples. It can be seen from Table 1 that our policy adaptation scheme can improve the generalization
performances in both place and pick-n-place tasks. It is interesting to note that A2-PA outcomes
fewer planning steps for pick-n-place tasks involving seen objects, suggesting that policy adapta-
tion on place data also facilitates the efficiency of picking. This might be because fine-tuning with
multi-labeled data brings multi-modal characteristics, better fitting the true action distribution. And
multi-modality is a commonality of pick and place actions.

Novel Camera Viewpoints. We vary the camera viewpoints at test time and present the results in
Figure 5. It is shown that our policy can generalize to novel camera viewpoints. This benefits from
our zero-shot 3D representation, which does not impose strict constraints on camera viewpoints. As
a result, our policy remains effective and practical for deployment in new scenarios with varying
camera configurations, offering greater flexibility for real-world applications.

Generalization to More Objects. To demonstrate the generalization to more object distractors and
denser clutter, we double the number of objects for testing as A2-2#O in Table 2. Notably, there is no
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Pick Place
Seen Unseen Seen Unseen

A2-2#O 81.3/3.89 78.7/3.18 81.3 56.7
A2-2#D 97.3/2.36 97.3/2.31 92.0 79.3

* Metrics of pick are presented as Task Success
Rate / Planning Steps.

Table 2: Scaling to Double Number of
Objects and Data

Give me the yellow block, 
place it into the hello kitty bowl.

Pick up the red pepper, leave it 
surrounding the two bowls.

Get a cute toy puppet, put it on 
the blue doraemon plate.

Grasp the avocado, place it on 
top of the white bread.

I need the banana, move it next to 
the bread and the egg tart.

Figure 6: Test cases in real world. Each case contains 21∼22 objects that are mostly unseen during
training. Target or reference objects are labeled with stars.
retraining of policy. Results show that our policy outperforms most baselines (tested with original
object number) even with double objects, validating effectiveness in more complex settings.

Scaling to More Data. We double the training data to test the scalability, and report results as
A2-2#D in Table. 2, which verifies effective improvements in both tasks when scaling to more data.

5.5 Real-world Experiments

Experiment Setup. Our real-world setup involves a UR5 robot arm equipped with a ROBOTIQ-
85 gripper, and an Intel RealSense L515 capturing RGB-D images at a resolution of 1280×720.
Notably, the camera viewpoint in the real-world setup is unseen during training. The workspace is
divided into pick and place workspaces, where the robot is supposed to grasp the target object within
the pick workspace, and place it within place workspace. Our test cases include 5 scenarios shown
in Figure 6. Each of them contains 21∼22 objects that are mostly unseen during training. There are
in total of 38 objects for real-world testing, including 10 seen objects and 28 unseen objects.

Comparison to Baselines. We compare our policy with A2-G, as it performs better in simulation.
We test 10 runs for each case, in a total of 50 times testing. All the policies are zero-shot transferred
from simulation to the real world. Test results are reported in Table 3. In general, our policy achieves
much better performance in task success rate. Though A2-G demonstrates fewer planning steps, it
gets a low task success rate at 56%. This is due to the fact that A2-G cannot afford errors in visual
grounding. Instead, our policy assesses the probabilities of feasible actions conditioned on vision-
language cues, reducing reliance on visual grounding accuracy. By further injecting multi-modality
characteristics, A2-PA improves both task success rate and planning efficiency.

Generalization. Results in Table 3 further verify our generalization to camera number, camera
viewpoints, and novel objects. This is not merely because we utilize foundation models, but also
because our alignment design effectively integrates the priors of multiple foundation models through
a lightweight network, all while preserving the knowledge embedded in the pre-trained models.

6 Conclusion
Method Task Success Planning Steps

A2-G 56.0 3.04
A2 76.0 3.95

A2-PA 80.0 3.68

Table 3: Real-world Results

We propose A2, an action prior alignment method for
language-conditioned pick and place in clutter. Using
foundation models, we construct a 3D zero-shot visual
representation, and generate candidate actions that pro-
vide feasible action patterns. Conditioned on these foundation priors, we conduct alignment by
learning one attention layer to score the candidate actions for downstream tasks. Our policy requires
less training data, supports fast adaptation, and achieves better task performances. Additionally, our
method shows zero-shot generalization to unseen objects and language instructions.
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A Related Works

A.1 Target-oriented Pick and Place in Clutter

Robotic pick and place in clutter has been a topic of interest in manipulation for decades. Tradi-
tional approaches [33, 34, 35, 36] are in the context of task and motion planning (TAMP) under
the assumption of known object models and states. These methods struggle in open real scenarios,
where obtaining precise object models and states is challenging. More recent research studies target-
oriented unknown object grasping in clutter by first clearing obstacles [37, 38, 39], or retrieving the
target object through non-prehensile actions [40, 41, 42, 1]. [2, 4, 6][43, 44] step forward to build
unknown object pick and place systems in cluttered environments, which are promising for real ap-
plications. However, these works still require images to specify target objects. Instead, language
instructions are more flexible in open-world applications. By cooperating with foundation models,
policies are capable of dealing with open-vocabulary objects in scattered scenes [7, 45, 9, 46]. In
this paper, we aim to develop a policy for open-vocabulary pick and place in clutter, with the target
specified with language instructions.

A.2 Foundation Models for Language-conditioned Manipulation

Foundation models in the field of CV and NLP have demonstrated powerful performance [26, 47,
48, 49], and have been explored to facilitate robotic manipulation in open-world applications. A
common way to utilize foundation models is to directly ground their capabilities into robotic sce-
narios. A series of approaches [13, 20, 50] uses vision foundation models for object grounding from
flexible language instructions. Among them, some works explore object-centric representations
for better scene understanding [13, 30, 51, 52, 53]. Other methods build 3D scene representations
capturing both semantic and geometric information [54, 55, 56, 57, 32, 58]. For example, several
approaches distill 3D neural feature fields from 2D foundation models [59, 19], requiring dense
camera views and time-consuming training for high-quality rendering. This hinders real-time in-
teraction in real-world scenarios. And efforts to overcome these limitations include introducing 3D
Gaussian Splatting [16, 14, 15] and using sparse-view 3D representations [18, 17]. There are also
methods [60, 21, 61, 22, 62, 63] utilizing the reasoning capability of large language models to build
systems for planning. However, the performance of these policies largely depends on the capability
of foundation models, and suffers from cascaded errors across individual modules. Another line of
works [7, 8, 10, 9, 11, 12, 32] integrates features from vision foundation models into end-to-end
policies. Despite promising results, these works consume extensive demonstration data and take
plenty of training steps for convergence. In addition, one has to face the generalization issue if the
tested objects or scenes are significantly different from those in the training data.

Recently, researchers have tried to learn action foundation models from large-scale robot data. For
instance, AnyGrasp [64] is a grasp foundation model capable of generating grasp actions for open
scenes. More generally, efforts are made to develop large Vision-Language-Action models (VLA)
for general tasks and even embodiments [65, 66, 67, 68, 69]. However, leveraging priors from
these action foundation models is much less explored. Some methods simply deploy pre-trained
grasp models to generate grasp actions after object grounding, essentially paying less attention to
the action planning side [19, 70]. In this paper, our policy aims to integrate priors from vision,
language, and action foundation models to improve task performance.

B 3D Representation Details

Given image(s) I = {Ii}i=0,1,...,M of one or more RGB-D camera(s), we extract 2D patch-level
features Wi by MaskCLIP [25], including visual patch-level features Wf

i and vision-language sim-
ilarity information Ws

i denoting cosine similarities between language embeddings and Wf
i .

We generate a 3D point cloud p within the workspace using the camera parameters. For each point
pj of p, we project it back to the ith camera viewpoint as the pixel ui

j , and get its visual feature f i
j
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by interpolation:
f i
j = Wf

i [u
i
j ] (1)

Following [18], we compute weights for each camera according to the visibility and distance of pj
relative to the ith camera. We denote the distance from pj to the ith camera viewpoint as li, and
compute the depth by interpolating the corresponding depth image Idi as l′i = Idi [u

i
j ]. Then the

truncated depth difference is defined as:

di = li − l′i, d′i = max(min(di, µ),−µ), (2)

where µ = 0.02 represents the truncation threshold for the Truncated Signed Distance Func-
tion (TSDF). The visibility of pj in the ith camera viewpoint can be represented as vi = 1di<µ.
Here 1 is the indicator function. We compute the weight for the ith camera viewpoint as:

βi = exp

(
min (µ− |di|, 0)

µ

)
. (3)

where βi decays as |di| increases. Then, we can obtain the semantic feature fj by fusing features
from M camera viewpoints:

fj =

∑M
i=1 βivif

i
j

ϵ+
∑M

i=1 vi
(4)

where ϵ = 1× 10−6 is to avoid numeric issues.

Similarly, we can get the similarity value sj for pj in the same way upon Ws
i . Finally, we get a 3D

feature cloud f = {fj} indicating the visual features and a 3D similarity cloud s = {sj} indicating
the task-relevant information.

We employ the checkpoint of MaskCLIP ViT-L/14 to generate visual features and crop the raw
image into 12 sub-images for more fine-grained features. We exclude the table points from the 3D
representations for pick tasks while retaining them for place tasks. This is because the policy does
not require the feature information of the table for pick action planning, and the filtering helps the
policy focus on the objects. Specifically, table points are removed by height filtering of the point
cloud in world coordinates.

C Training Details

C.1 Simulation Environment

We collect demonstration data by model-based expert planners with a UR5 arm in PyBullet [71].
There are three statically mounted cameras (M = 3) overlooking the tabletop as shown in Fig. 2:
one positioned 45° downward from the front, one 50° downward from the anti-diagonal perspective
and one 50° downward from the diagonal perspective, referred to as the front, left and right cameras
respectively. For each camera, we adopt the same camera intrinsics as those of Intel RealSense
L515. Our object models are from GraspNet-1Billion [24].

C.2 Data Collection

Data Collection Settings. For both pick and place, we collect data from 5k episodes, among which
the success steps are recorded as demonstrations. This results in around 6.5k successful samples in
total, with approximately 3.4k for pick and 3.1k for place. During data collection of pick, 15 objects
are randomly dropped into the workspace to form a cluttered scene, and the model-based pick expert
planner chooses the nearest grasp of the target objects. For placement, to ensure adequate space,
there are 8 objects in the workspace whose center positions are at least 0.1m from one another. The
model-based place expert planner identifies the valid place region based on the reference object and
the relation, and then randomly chooses a place within this region.

Flexible Language Instructions. During each rollout of data collection, we randomly sample a
language template along with keywords (target for pick tasks, reference and relation for place tasks)
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Figure 7: Diversity of object labels in lan-
guage instructions.

(a) on (b) around 

Figure 8: Example generated place regions for (a)
“on” and (b) “around” the red bowl.

to form a complete language instruction. For pick, there are five language templates: “Give me the
{target}”, “I need a {target}”, “Grasp a {target} object”, “I want a {target} object”, “Get something
to {target}”, where {target} can be a concrete label (e.g. banana), a general category (e.g. fruit), or
the attribute of color (e.g. red), shape (e.g. round), or even a functional description (e.g. hold other
things). For place tasks, the language instructions are similar, but with additional spatial relation
words: “Put it {relation} the {reference}”, “Place this {direction} the {reference}”, “Move the
object {direction} the {reference}”. Here {relation} specifies the spatial relationship respective to
the {reference}. {reference} is analogous to {target}, while {relation} can be words indicating “on”
or “around” relations relative to reference}. For instance, words like “on top of”, and “into” belong
to “on” relation, and others such as “next to”, and “near” belong to “around” relation. There is a
total of 66 object models for data collection, with 36 language keywords categorized into four types:
concrete labels, general categories, attributes of color or shape, and functional descriptions. The
four types of object label follow a 4:2:2:2 distribution, as shown in Fig. 7. For spatial relations, there
are 6 choices for “on” or “around” relations.

Model-based Experts. We collect data with model-based expert planners. The model-based pick
expert planner selects the grasp nearest to the target objects from candidates generated by Grasp-
Net [24]. The model-based place expert planner determines valid place regions based on the ref-
erence object and the relation. Specifically, we first obtain object region proposals from the mask
image in Pybullet [71], where each pixel donates the index of the object visible in the camera. Ob-
ject regions are identified as bounding boxes of pixels with the same index, and regions whose size
is smaller than 5 × 5 are discarded. Then the valid place region is generated within the reference
object for the “on” relation, or around the reference object for the “around” relation. Note that the
generated “around” region should not overlap with any object regions. Fig. 8 shows example place
regions for the “on” and “around” relations.

Visual Representation Filtering. We exclude the table points from the visual representations (i.e.
3D feature cloud and 3D similarity cloud) for pick tasks while retaining them for place tasks. Specif-
ically, table points are removed by height filtering of the point cloud in world coordinates. This is
because the policy does not require the feature information of the table for pick action planning, and
the filtering helps the policy focus on the objects.

C.3 Training

Network Architecture. We adopt the transformer architecture of the text encoder in [26], with width
of 768, head of 8, and layer of 1. The action decoder is a 3-layer MLP. The network parameters of
MaskCLIP and action models are fixed during training.

Hyperparameters. We set the sample number N = 500. For the action candidate number L, we
sample 6 place poses for each object (3 for “on” relation and 3 for “around” relation), while for pick,
L depends on the output of GraspNet. We use α = 0.2 during policy adaptation.

Imitation Learning Setting. Regarding Eqn. 3, our goal is to maximize the likelihood of the suc-
cessful action ad among the candidate actions AL(Id) for each demonstration D = {Id,Ld, ad}.
We formulate this as a maximum likelihood estimation (MLE) problem, which is optimized via the
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Grasp a round object. Get something to eat. Give me a cup. I need a fruit. Give me the pear.

Get something for cleaning. I need a container. Give me the suger.I need a suger. Give me the box.

Put it near the box. Put it on the cup. Move the object around the plum.Place this near the pear. Put it on the red mug.

Move the object close to 
the black marker.

Move the object around 
the gelatin box.

Put it next to the 
yellow bowl.

Put it beside the shampoo. Place this near the suger.

I need a cup, 
put it around the box.

Give me a cup, 
move the object near the racquetball.

Give me the suger,  move the object 
surrounding to the small clamp.

I need a suger, 
place this in the yellow bowl.

I want a white cuboid, 
put it around the small clamp.

Figure 9: More example test cases in simulation. Target or reference objects are labeled with stars.

cross-entropy loss. To be specific, the policy is trained through cross-entropy loss for 200 epochs.
During fine-tuning, the policy is trained with only 100 multi-labeled place data using binary cross-
entropy loss for 200 epochs, consuming around 2 minutes.

LCE = − logω(ad|Id,Ld) (5)

D Evaluation Details

D.1 Test Cases

We collect test cases with 66 seen objects and 17 unseen objects. For pick, each case contains 15
objects to form adversarial clutter where the robot might need to grasp away other obstacles for
target grasping. All pick policies are evaluated on x=10 arrangements of seen objects and x=5 of
unseen objects. For place, each case contains 8 objects to preserve some free space surrounding the
reference object for placement. For place policies, performances are tested on x=20 arrangements of
seen objects and x=10 of unseen objects. Given that placement is a one-step task, we add variances
to action candidates in each test run of each case to evaluate robustness. For pick-n-place, we test
policies with x=8 seen objects cases and x=4 unseen objects cases. Note that in these cases,
we divide the workspace into a pick workspace (left) and a place workspace (right). To determine
the success of target grasping, we use environment feedback in simulation. In real world, target
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Pick-Seen

Place-Seen Place-Unseen

Pick-Unseen

Give me the toy airplane. Get something to drink. I need a sugar. Get something to clearn.

Move the object to 
the soap dish.

Place this in the 
yellow bowl.

Place this near the plum. Put it next to the knife.

Figure 10: Example test cases of double object number in simulation. The target objects or reference
objects are labeled with stars.

is regarded as grasped if CLIP similarity of language and grasped object crop (filtered by depth)
exceeds a threshold.

More example test cases across all categories are presented in Fig. 9. For cases of more objects (30
objects in a scene) in Sec. 2, Fig. 10 shows some example cases, demonstrating more complex
settings with frequent occlusion and dense clutter than those in Fig. 9.

D.2 Baseline Implementations

Neural Field based Pick Policies. These include LERF-TOGO [19] and GraspSplats [14]. LERF-
TOGO [19] is a NeRF-based method that distills feature fields from CLIP [26], while Grasp-
Splats [14] reconstructs 3D feature fields from CLIP by 3D Gaussian Splatting [72]. In the ex-
periments, we train the feature fields on each step of action planning at test time. With the feature
fields, they first locate the target object from language instructions, and select the corresponding
grasp from GraspNet [24] generated grasps. We follow the number of camera viewpoints in their
papers to guarantee a fair comparison. Specifically, we add a circle of camera viewpoints around
the workspace to provide sufficient information. LERF-TOGO trains its feature field with 53 posed
RGB images, while GraspSplats uses 23, and both of the inputs include the 3 RGB-D images used
by our method.

Object-centric Pick and Place Policies. There are two object-centric pick policies. VLG [30]
leverages object-centric representation to jointly model vision, language, and action information.
ThinkGrasp [22] is an approach that develops a vision-language system with GPT4o [73] to plan
the object grasp sequence, followed by object segmentation and grasp planning. For placement,
we implement a method similar to [31], namely VLP, which grounds reference objects and spatial
relations respectively. For a fair comparison, CLIP is not fine-tuned in VLP as in [31].

3D Visual Grounding Pick and Place Policies. We implement variant methods that directly con-
duct visual grounding using our 3D visual representations, named A2-G-Pick and A2-G-Place for
pick and place tasks respectively. These methods select the action nearest to the region with the
highest average similarity of K-nearest neighbors (K=0.05M ). In addition, A2-G-Pick can combine
with A2-G-Place as a 3D visual grounding pick-n-place policy, denoted as A2-G.

3D End-to-end Pick and Place Policies. We compare to 3D end-to-end policies Act3D [11], RVT-
2 [12] and 3D Diffuser [32], which leverage multi-view CLIP features to predict 3D actions. We use
pre-trained models of Act3D and RVT-2, as well as the models trained on our data (referred to as
Act3D†, RVT-2†, and 3D Diffuser†) for evaluation. Note that the setting of the pre-trained model of
3D Diffuser is distinct from our setting, thus cannot be directly employed.
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RL IL Res Data Seen Unseen

✓ 1500 36.7 28.0
✓ ✓ 1500 89.7 68.0

✓ 100 56.3 19.7
✓ ✓ 100 89.0 76.0

Table 4: Ablation Studies of Different Policy Adaptations

TE LE RoPE RGB Pick Place
Seen Unseen Seen Unseen

✓ 90.7/2.41 80.0/3.20 69.0 52.0
✓ 60.0/4.58 73.3/3.55 26.7 42.7
✓ ✓ 95.3/2.55 97.3/2.57 89.3 74.0

✓ ✓ ✓ 92.7/2.84 78.7/3.06 74.0 39.3
✓ ✓ ✓ 94.0/2.48 88.0/2.39 71.3 43.3

* Metrics of pick are presented as Task Success Rate / Planning Steps.

Table 5: Ablation Studies of Network Architecture

D.3 Real-world Experiment

Setups. In our real-world experiments, we initially adopted a single Intel RealSense L515 camera
and observed that our policy achieves a good task performance. This result demonstrates that our
method generalizes well to limited-view settings, which are common in practical robotic deploy-
ments. We also experimented with multi-camera setups but encountered depth interference caused
by overlapping structured-light laser patterns. This interference resulted in noisy or unstable depth
maps, which affected downstream modules such as GraspNet, whose grasp predictions rely on ac-
curate depth information. As a result, the decision to use a single camera represents a deliberate
trade-off between broader observation coverage and depth sensing reliability.

At inference, the policy first receives the pick language instruction, and plans actions upon the point
cloud within the grasp workspace. Once the target object is grasped, the place language instruction
is fed into the policy for action planning, with the point cloud within the place workspace. For
the place action model, we employ a pre-trained model to generate object region proposals [74],
which is trained on data from GraspNet-1Billion [24] with mAP = 70.70 for seen objects and
mAP = 34.53 for unseen objects.

Example Sequences. Figure 15 illustrates some execution sequences in real-world experiments.
In a cluttered environment, by scoring the candidate actions through alignment, our policy displays
the ability to gradually remove obstacle objects, grasp the target object, and finally place it at the
specified location.

E More Ablation Studies

Different Policy Adaptations. We compare different ways of policy adaptations, including dif-
ferent learning paradigms (RL, SL), data amounts and architectures (with or without the residual
block). Performance comparisons on place tasks are reported in Table 4. It is shown that fine-tuning
with a residual block significantly outperforms full fine-tuning. This is because the residual block
effectively injects multi-modality without losing much information of the pre-trained policy. With
the residual block, both RL and SL can achieve comparable performances, whereas RL consumes
much more data and demonstrates poorer generalization. This might be because place is a one-step
task, where the lack of sequential decision making limits the effectiveness of RL optimization.

Network Architecture. We compare our method with some variant methods to evaluate the archi-
tecture design. Testing results are shown in Table 5. Removing RoPE causes notable drops: 17.3%
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“Grasp a round object.”

“Get something to eat.”

“Put it near the box.”

“Put it on the cup.”

3D Point Cloud 3D Feature Cloud 3D Similarity Cloud Action Priors Action Alignment Selected Action

Figure 11: Case studies. For each case, we show the 3D representations (i.e. 3D point cloud,
3D feature cloud, and 3D similarity cloud), the action priors from action foundation models, the
alignment results, and the final selected action. Notably, in the similarity cloud, regions with high
similarity are highlighted with red rectangles. For each action, the labeled color indicates the action
probability, with the color shifting toward red as the probability increases.

“Give me the theramed.”

3D Point Cloud 3D Similarity Cloud Action Priors Selected ActionSampled Point Cloud Action Alignment

Figure 12: Case visualization where the visual grounding fails, yet our policy selects the correct
grasp via alignment. The white rectangle in the 3D point cloud marks the target, while the red star
in the similarity cloud marks the direct visual grounding result. For each action, the labeled color
indicates the action probability, with the color shifting toward red as the probability increases.

for unseen pick tasks and over 20% for place tasks, highlighting its importance for generalization.
In addition, using sampled point features as values in cross-attention instead of image features de-
grades performance, showing the benefit of foundation model features for effectiveness and gener-
alization. Also, adding task-specific embeddings (TE) to action features harms performance, likely
by hindering shared representations between pick and place. Finally, directly feeding the language
embedding (LE) into cross-attention instead of weighting visual features with similarities weakens
CLIP priors and reduces success rates.

Case Studies. Figure 11 shows several cases to illustrate the 3D representations, action priors, and
alignment results of our policy. Given language instructions, the similarity cloud can highlight the
task-relevant regions, and our policy aligns action priors based on these representations. Figure 12
further shows a case where visual grounding alone fails, but our alignment still enables correct
grasp selection through alignment. This indicates that while we take similarity-sampled points, we
evaluate actions guided by visual grounding rather than being determined by it. Figure 13 visualizes
some typical failure modes, including heavy occlusion and visual ambiguity of target objects, as
well as semantic ambiguity in language instruction, i.e ambiguous word “cylinder”.

Failure Modes. Fig. 13 visualizes some typical failure modes, including heavy occlusion and visual
ambiguity of target objects, as well as the semantic ambiguity in language instruction. In the left
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Heavy Occlusion

Pass me the strawberry.

Visual Ambiguity

I want the darlie toothpaste.

Semantic Ambiguity

Put it into a cylinder.

Figure 13: Example failure modes, including heavy oc-
clusion, visual ambiguity, and semantic ambiguity.

Camera

Robot

Pick Workspace

Color

Depth

Place Workspace

Figure 14: Real-world platform.

“I need the banana, move it next 
to the bread and the egg tart.”

Obstacle grasped Target grasped Target placed

“Give me the yellow block, place 
it into the hello kitty bowl.”

Obstacle grasped Target grasped Target placed

“Grasp the avocado, place it 
on top of the white bread.”

Obstacle grasped Target grasped Target placed

“Pick up the red pepper, leave it 
surrounding the two bowls.”

Obstacle grasped Target grasped Target placed

Figure 15: Example testing sequences. The camera viewpoint and most of the objects are unseen
during training. Taking the language instructions for pick and place, our policy is able to gradually
remove obstacles, grasp the target object, and finally place it at the target location.

case, the target object “strawberry” is largely occluded by other distractors, demonstrating a heavily
cluttered scene. In such cases, the policy struggles to pick up the target within limited planning
steps. In the middle case, the target object “darlix toothpaste” shares a similar visual appearance
with the distractor “darlix box”, which misleads the policy during selection. The right case illustrates
semantic ambiguity in the language instruction. Although the phrase “into a cylinder” suggests that
the target object is container-like, the expression lacks specificity and may lead the policy to select
other cylindrical objects that do not afford containment.
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