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Abstract: Designing reinforcement learning curricula for agile robots tradition-
ally requires extensive manual tuning of reward functions, environment random-
izations, and training configurations. We introduce AURA (Autonomous Up-
skilling with Retrieval-Augmented Agents), a schema-centric curriculum RL
framework that leverages Large Language Models (LLMs) as autonomous de-
signers of multi-stage curricula. AURA transforms user prompts into YAML
workflows that encode full reward functions, domain randomization strategies,
and training configurations. All files are statically validated before any GPU time
is used, ensuring efficient and reliable execution. A retrieval-augmented feedback
loop allows specialized LLM agents to design, execute, and refine curriculum
stages based on prior training results stored in a vector database, enabling contin-
ual improvement over time. Quantitative experiments show that AURA consis-
tently outperforms LLM-guided baselines in generation success rate, humanoid
locomotion, and manipulation tasks. Ablation studies highlight the importance
of retrieval for curriculum quality and convergence stability. AURA successfully
trains end-to-end policies directly from user prompts and deploys them zero-shot
on a custom humanoid robot in multiple environments, enabling robust locomo-
tion on varied terrain and recovery from strong perturbations—capabilities that did
not exist previously with manually designed controllers. By abstracting the com-
plexity of curriculum design, AURA enables scalable and adaptive policy learning
pipelines that would be complex to construct by hand. aura-research.org
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Figure 1: AURA-trained policies deployed successfully on custom humanoid hardware and in simulation for
locomotion and manipulation tasks.
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1 Introduction

Curriculum reinforcement learning (RL) [1, 2, 3, 4] enables robots to master complex skills by
decomposing tasks into progressively harder subtasks [5]. This approach has proven to be effective
in domains like agile locomotion [6, 7, 8, 9], where single-stage learning can struggle with sparse
rewards or high-dimensional exploration spaces. By splitting the learning process, agents are guided
through increasingly challenging environments, improving sample efficiency and convergence.

However, designing effective multi-stage curricula remains a significant bottleneck [10, 11]. Multi-
stage curricula require coordinated changes across reward shaping, randomization, simulation fi-
delity, and optimization; as the number of stages increase, designing transitions, verifying stability,
and tuning parameters scales combinatorially (the “curse of dimensionality” [12]) and becomes brit-
tle to human error and heuristic bias [13, 14]. Moreover, failures at any stage often derail the entire
training process, making automation critical for scaling curriculum RL.

Large language models (LLMs) offer a compelling alternative to optimization-based approaches
[15]. Their high-level reasoning and generalization capabilities have demonstrated success in robotic
planning, perception, and code generation [16, 17, 18, 19, 20, 21]. While LLMs are not directly
deployable on real-time control loops due to latency constraints [22], LLM’s have shown potential
in designing training schemes for real-time robot control policies [23, 24, 25]. However, current
LLM-based RL pipelines inefficiently use computation on launching parallel environments to deal
with malformed generations and fail to learn from experience across tasks.

What is missing is a principled framework for transforming high-level prompts into reliable, exe-
cutable RL training pipelines that improve with experience. Such a system should (1) ensure syntac-
tic and semantic validity before execution, (2) use past experience to optimize future performance,
and (3) modularize the pipeline into verifiable components [26]. Without these capabilities, LLMs
are limited to more fragile, trial-and-error reward design rather than scalable curriculum generation.

AURA (Autonomous Upskilling with Retrieval-Augmented Agents) addresses these bottlenecks with
three key ideas. (i) A typed YAML schema captures curricula, reward functions, randomization,
and training hyperparameters; structured LLM outputs are statically validated before a single GPU
cycle is spent. (ii) A team of specialized LLM agents works in collaboration to enable modular,
schema-compliant curriculum generation. (iii) A Retrieval-augmented generation (RAG) module
with a vector database (VDB) stores prior task specifications, curricula, and rollout evaluations. This
database supports experience-informed generation by enabling agents to condition on successful
prior workflows, improving both accuracy and generalization.

We evaluate AURA on a suite of humanoid locomotion and deploy the resulting policies zero-shot
on a custom, kid-sized humanoid. Compared to curriculum RL baselines and recent LLM-crafted
reward pipelines, AURA is capable of generating context-rich, high-dimensional curricula that pro-
duce successful zero-shot policies deployable on real humanoid hardware. Our contributions are:

1. AURA: A fully agentic, retrieval-augmented framework that turns a natural-language prompt into
a hardware-deployable controller policy.

2. Curriculum compiler, schema-validation: A typed YAML schema that provides an LLM-
friendly interface for defining reward terms, domain randomizations, and training configurations.
Static validation of the YAMLs enables descriptive error messages for generation retries, without
wasting compute on failed environment launches.

3. Experience-aware, self-improving, curriculum generation agent: Specialized LLM agents
query a vector database of past runs and evaluations, select relevant training files, generate high-
level curricula, and refine them into executable multi-stage specifications. This feedback-driven
loop promotes curriculum quality and training stability over many iterations.

4. Zero-shot deployment: Experiments showing AURA’s policies transfer zero-shot to a custom
kid-sized humanoid, Berkeley Humanoid [27], and manipulators, showing end-to-end prompt-to-
policy capability.
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2 Related Work

2.1 Large Language Models in Robotics

Early efforts to link natural language to robot control and task-planning frameworks translate
natural-language commands into symbolic action graphs, as demonstrated by SayCan and Code-
as-Policies [17, 18]. Recent Vision–Language–Action paradigms, such as RT-1/2, π0, Octo, and
OTTER, [16, 28, 29, 30, 31], demonstrate that pretraining on large-scale robot data yields policies
that generalize across many robotic skills. Further work has extended this to cross-domain general-
ization, deformable object manipulation, and long-horizon household tasks, exemplified by Gemini
Robotics and embodied LLMs [21, 22]. Other lines of work have explored LLM-driven planning
and language-augmented reasoning for robotic control pipelines [19, 20, 21, 32, 33, 34, 35]. Despite
their semantic flexibility, these methods continue to rely on hand-tuned, low-level controllers and
standard actuation assumptions, with LLMs typically external to the closed control loop [32, 33].
RoboGen addresses these limitations through decomposing long-horizon tasks into skills, which are
tuned or trained by LLMs [36].

2.2 Curriculum Reinforcement Learning

Reinforcement learning often struggles with sparse rewards and long-horizon problems, where
meaningful feedback is rare or delayed over many timesteps [37]. Curriculum RL addresses sparse-
reward and long-horizon problems by exposing agents to a progression of gradually more diffi-
cult tasks [1, 5, 14]. Surveys and benchmarking studies note that practical curriculum design re-
mains heuristic and sensitive to context-specific particulars [14]. Reverse-curriculum approaches
[38, 39] employ a staged training process that progressively increases the task’s difficulty from
previous successful demonstrations, thereby enhancing exploration and sample efficiency. Domain-
randomization and curriculum-based RL have enabled real-world legged locomotion and manipula-
tion in challenging environments [2, 3, 4, 6, 7, 8, 9, 40, 41, 42, 43, 44].

2.3 LLM-guided RL and Curricula

Emerging systems such as CurricuLLM [24] and Eureka [23, 45] utilize LLMs to generate reward
functions for RL training. Eureka uses evolutionary search and prompts LLMs in parallel to di-
rectly generate reward code for various tasks in simulation. DrEureka extends Eureka to generate
domain randomizations and consider hardware safety, demonstrating real-world locomotion tasks
on a Unitree Go1 quadruped robot [25]. CurricuLLM [24] similarly uses evolutionary search and
directly generates code, but focuses on curriculum generation and humanoid locomotion, showing
real-world success on the Berkeley Humanoid [27].

These frameworks require sampling a large number of training runs to obtain a viable or high-
performing policy, relying on LLM stochasticity and brute-force search. RAG and VDBs are ap-
proaches to enhance the LLM knowledge beyond what the LLM has been trained on [46], which
AURA utilizes to construct effective curricula.

Positioning of this work: AURA unifies curriculum generation, domain randomization, and training
configuration within a schema-validated, retrieval-augmented loop that learns from prior runs. This
yields consistent, deployable specifications with higher first-attempt launch rates and removes the
need for post hoc sampling or manual curation.

3 Methods

3.1 Problem Setup and Curriculum Formalism

We define a curriculum C as an ordered sequence of K training stages, C = {ξ1, . . . , ξK}, where
each stage ξk = ⟨Φk, ρk,Θk, κk⟩ is comprised of a reward Φk, domain-randomization distributions
ρk over environment parameters ψ, a training configuration Θk, and a promotion criterion κk(π)
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Figure 2: An overview of the AURA curriculum generation and policy training framework.

that governs advancement. The curriculum stages are modeled as an MDP M = ⟨S,A, T (· |
s, a;ψ), Rψ, γ⟩, [47, 48] with ψ denoting randomized physics properties [49, 50]. AURA gener-
ates (Φk, ρk,Θk) for each stage as schema-compliant YAML files that are statically validated and
compiled into an MJX-based RL pipeline [51, 52]. We use this notation to describe generation,
validation, training, and iteration.

3.2 Inputs to Curriculum Generation

To instantiate a curriculum from a prompt, AURA consumes four inputs: (i) a natural language
task description specifying the desired behavior; (ii) a structured robot specification: joint names,
semantic labels (e.g., “left foot contact”), available sensors, and actuator limits; (iii) an MJCF sim-
ulation model encoding robot kinematics, dynamics, and contact geometry; and (iv) a Python MJX
environment defining observations, actions, physics parameters, and episode termination conditions.

3.3 Retrieval-Augmented High-Level Planning

AURA begins by leveraging LLMs and a vector database of prior curricula and outcomes to generate
a high-level plan. The user-provided task description and robot specification are first passed into a
query LLM, which synthesizes them into a structured retrieval query. This query is then encoded
with OpenAI’s text-embedding-3-large [53] and used to perform cosine-similarity search over
the VDB (Pinecone). From the top-3 most relevant prior curricula, the database returns reward,
randomization, and training files, along with user feedback. A selector LLM then chooses the single
most relevant example from this set, based on both user feedback and curricula relevance to the
current task; this example is included in the high-level planner’s context for generating the new
curricula.

Conditioned on this selected example and the user task specification, a high-level planner decides
the number of stages and produces a natural-language plan for each one. The plan describes ideas
for reward components, domain randomizations, and stage-specific training hyperparameters (e.g.,
terrain type, disturbance level, PPO hyperparameters, etc.).

The VDB enables two modes of AURA. (1) AURA Blind where the VDB is initialized as empty
for the first iteration and AURA must design a reward from scratch, and (2) AURA Tune where the
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VDB is initialized with human-expert rewards from a related task and must tune that reward for the
current domain.

3.4 Stage-Level Specification and YAML Generation

Each stage plan from the high-level planner is given to an independent stage-level generator which
translates the stage plan into structured YAML files. The stage-level generator takes as input: (i) the
user task description; (ii) the natural-language stage description produced by the high-level planner;
(iii) the available reward function library; (iv) state variables and sensor signals exposed by the robot
environment; (v) the selected prior curriculum example retrieved from the VDB (chosen from the
top-3 retrieval set); (vi) context from previously generated stages in the current workflow; and (vii)
the reward/schema format specifications.

Each stage description ξk is translated into three human-readable, schema-compliant YAML files:
Reward YAML (Φk) defines the differentiable terms, coefficients, and aggregation logic with ex-
plicit sensor/state dependencies; Randomization YAML (ρk) defines the target parameters, distribu-
tions, and activation conditions; and Training Config YAML (Θk) defines the PPO hyperparameters,
episode budgets, checkpointing cadence, normalizations, etc.. These files provide the abstract spec-
ifications needed for execution without requiring direct generation of JAX code.

3.5 Schema Validation and Compilation

Directly emitting JAX/MJX code from LLMs can be brittle in practice. AURA compiles only after
static validation against typed schemas governing the generated workflow, reward, randomization,
and training files. Validation enforces: (i) type conformance (int, float, bool, vector, etc.); (ii)
structural schema compliance; (iii) reference integrity (all state variables and sensors referenced in
Φk exist in the MJX environment); and (iv) mathematical well-formedness of reward expressions.
Expressions are built from a function registry (e.g., fn.NORM L2 producing JAX arrays) and must
compile symbolically under MJX. A generation retry is triggered whenever schema validation de-
tects an error. The schema validation generates a descriptive error message that includes the type
of error, content of what caused the error, and sometimes a recommendation for how the error can
be fixed. This error message, along with the previously generated (but invalid) YAML files, are fed
back into the next attempt to guide corrections and avoid repeating mistakes; we set a maximum of
five retries per stage. Once validated, YAMLs are compiled into MJX code.

3.6 Staged RL Training Loop

Compiled stages are trained with PPO across parallel simulation environments, each running for the
episode cap shown in Θk. Policies from one stage initialize the next, enabling progressive learning.

3.7 Feedback and Iteration

Following each stage, an automated feedback module analyzes rollouts and training signals under a
task-specific rubric (e.g., success rate, stability and energy, reward-component attribution). Its rec-
ommendations may adjust reward terms, randomizations, or hyperparameters for subsequent stages
within the same iteration if the curriculum training has not yet completed all K stages.

An iteration of our framework is defined as the complete execution of: (i) VDB-backed retrieval
and high-level planning; (ii) YAML generation and static validation for all stages; (iii) PPO training
across K stages; with (iv) automated feedback analysis between each stage. After the final trained
policy is deployed in simulation or on hardware, the user will evaluate the policy performance, then
provide user feedback: 2–4 sentences in natural language judging the policy’s behavior and quality
based on the video rollout (eg. ”the policy survives well, but could track linear velocity better”).
User feedback is attached to the files of the just-trained curriculum and inserted into the VDB along-
side the YAMLs, metrics, and rollouts. Any training that incorporates user feedback begins a new
iteration (t+1), which again starts from VDB retrieval conditioned on the now-augmented database.

5



1 2 3 4 5
0

300

600

900

1200

1500

1800

Survival Length Comparison

Iteration

Ep
is

od
e 

Le
ng

th
 (

st
ep

s)

9/16/25, 10:31 PM 127.0.0.1:54503

127.0.0.1:54503 1/1

1 2 3 4 5
0

300

600

900

1200

1500

1800

Linear Velocity Tracking Comparison

Iteration

Li
ne

ar
 V

el
. 

Tr
ac

ki
ng

 S
co

re

9/15/25, 10:10 PM 127.0.0.1:57371

127.0.0.1:57371 1/1

1 2 3 4 5
0

300

600

900

1200

1500

1800

Linear Velocity Tracking Comparison

Iteration

Li
ne

ar
 V

el
. 

Tr
ac

ki
ng

 S
co

re

9/15/25, 10:10 PM 127.0.0.1:57371

127.0.0.1:57371 1/1

1 2 3 4 5
0

300

600

900

1200

1500

1800

Linear Velocity Tracking Comparison

Iteration

Li
ne

ar
 V

el
. 

Tr
ac

ki
ng

 S
co

re

9/15/25, 10:10 PM 127.0.0.1:57371

127.0.0.1:57371 1/1

1 2 3 4 5
0

300

600

900

1200

1500

1800

Survival Length Comparison

Iteration

Ep
is

od
e 

Le
ng

th
 (

st
ep

s)

9/16/25, 10:31 PM 127.0.0.1:54503

127.0.0.1:54503 1/1

1 2 3 4 5
0

300

600

900

1200

1500

1800

Survival Length Comparison

Iteration

Ep
is

od
e 

Le
ng

th
 (

st
ep

s)

9/16/25, 10:31 PM 127.0.0.1:54503

127.0.0.1:54503 1/1

1 2 3 4 5
0

300

600

900

1200

1500

1800

Survival Length Comparison

Iteration

Ep
is

od
e 

Le
ng

th
 (

st
ep

s)

9/16/25, 10:31 PM 127.0.0.1:54503

127.0.0.1:54503 1/1

Figure 3: Survival and linear velocity tracking scores across iterations to evaluate locomotion policy quality on
a custom humanoid. The plots show the policy quality improvements of AURA over five iterations compared to
MuJoCo Playground’s expert designed Berkeley Humanoid reward and CuricuLLM’s reported results in Isaac
Lab. AURA Blind generates rewards from scratch (VDB is initialized as empty) and AURA Tune modifies and
improves an existing reward designed for another embodiment (VDB is initialized with MuJoCo Playground’s
Berkeley Humanoid expert human rewards, domain randomizations, and training configuration).

3.8 Modular LLM Collaboration

Hallucination mitigation: AURA limits LLM hallucinations through three mechanisms: (i) retrieval
grounding—the planner is context-seeded by a single example selected from the top-3 VDB results;
(ii) schema constraints—the model emits only typed YAML using a restricted operator registry (e.g.,
fn.NORM L2) rather than arbitrary code; and (iii) consistency checks—static validation enforces
type/structure and reference integrity to environment signals, followed by MJX compile checks and
a capped regenerate-on-error loop (max 5 retries). Together, these mechanisms reject unsupported
symbols and false references, improve first-try success, and reduce off-distribution generations.

4 Experiments

4.1 Simulation Environments

We present simulation experiments on a variety of tasks on three humanoid robots-a custom hu-
manoid, Berkeley Humanoid, and Booster T1, and a UR5e manipulator. All example AURA trained
policy rollouts can be seen in Fig. 1. All AURA experiments are trained in MuJoCo-MJX and are
evaluated over 1024 parallel environments on 5 seeds. CurricuLLM simulation results are reported
using their Isaac Lab results. More detailed setup information can be found in Appendix B.

4.2 Experimental Setup

We evaluate two aspects of AURA and baselines:

(1) Generation Success Rate. In Table 2, we report the success rates of AURA, its ablations, Cur-
ricuLLM, and Eureka. For AURA, we measure curriculum-level success. A run is considered
successful only if all stages (rewards, domain randomizations, and training configs) in the generated
curriculum successfully launch GPU-accelerated training. AURA performs a single launch per task
without parallel sampling. We also compare AURA with its ablated variants: AURA without a VDB,
AURA without schema validation (no retires), and AURA using a single LLM for both high-level
planning and YAML generation. Eureka and CurricuLLM launch multiple environments in paral-
lel. We report the fraction of successful environment launches out of all generated rewards. Unlike
AURA, success is measured one stage at a time rather than requiring full curriculums to succeed.

(2) Training and Deployment Benchmarking. To evaluate policy quality, we run five iterations of
curriculum generation and training using AURA, AURA Blind, AURA Tune, CurricuLLM, and a
human-designed baseline. Each trained policy is evaluated with 5 random seeds each across 1024
randomized environments. Evaluation reward functions, domain perturbations, and task variations
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Episode Survival
Length

Linear Vel.
Tracking

Pushing Cube
Success %

AURA 2873 ± 474.8 2077 ± 425.6 91.95 ± 0.95
Playground 2903 ± 411.1 1546 ± 375.8 0.00 ± 0.00∗∗

CurricuLLM* 315.4 ± 73.95 40.46 ± 10.64 62.50 ± 16.60
Table 1: Policy evaluation across metrics. Episode survival length and linear velocity tracking are used to
evaluate a velocity-command following task on the Berkeley Humanoid. The success rate of pushing cubes is
evaluated on the UR5e environment. *CurricuLLM’s Berkeley Humanoid and Fetch-Push results are from
[24]. **MuJoCo Playground’s Pushing Cube Success is reported using Franka Emika Panda rewards on the
UR5e embodiment, which should not be expected to succeed. AURA adapts the Franka expert reward and
training configuration into an effective curriculum for the UR5e.

are hidden from all methods to simulate realistic zero-shot deployment. The equations used for
scoring policies can be found in Appendix A.2. Selected final policies are transferred to hardware
for qualitative testing and demonstration.

4.3 Simulation Experiment Evaluations

4.3.1 Custom Humanoid Fig. 3 summarizes evaluation during simulation deployment across it-
erations, showing average survival and linear velocity tracking scores. Both AURA variants im-
prove noticeably over the human baseline on survival and linear-velocity tracking, which shows
that AURA can generate an effective curriculum from scratch and can adapt existing rewards into
effective curriculums. AURA Tune and AURA Blind both iteratively improve over five iterations,
reasoning about reward signals and user feedback. AURA Blind’s curriculum did not generate or
use any rewards related to foot phase tracking, leading to a more inconsistent and asymmetrical
gait, but better simulation performance compared to AURA Tune. The locomotion task prompt does
not specify stylistic information about the gait, so this is a reasonable result. AURA Tune, which
is initialized with MuJoCo Playground’s rewards, kept existing reward terms for phase tracking,
maintaining a consistent gait while still improving over the base reward.

4.3.2 Berkeley Humanoid For the Berkeley Humanoid results shown in Table 1, AURA’s episode
survival length is similar to the MuJoCo Playground baseline, showing that both survive nearly the
full 3000-step horizon. The key difference is in linear velocity tracking, where AURA achieves a
significantly better score, reflecting more precise command following. While Playground training
schedules 200M steps of flat terrain then 100M steps on rough terrain, AURA split training into
100M on flat terrain with mild perturbations, 100M on rough terrain with mild perturbations, and
100M on rough terrain with heavier, more frequent pushes. AURA also made the velocity following
reward more strict and increased reward emphasis on feet-phase and action-rate, resulting in better
velocity command following and smoother, more consistent stepping.

4.3.3 BoosterT1 Humanoid Training with the MuJoCo Playground’s BoosterT1 reward directly
resulted in a policy with jerky motion and small, high-frequency shakes during locomotion. AURA
was told this as feedback, which led it to generate new reward terms which penalize the squared dif-
ferences across consecutive time steps for actions and for velocities, resulting in a visibly smoother
policy. Heavier domain randomization also helped improve performance, raising episode length
from 2139 to 2366 steps and linear-velocity tracking score from 1786 to 2162.

4.3.4 UR5e Manipulator For the UR5e cube pushing task, AURA begins with MuJoCo Play-
ground’s Franka Emika Panda environment reward which is not sufficient to train a policy in the
UR5e environment as shown in Table 1. AURA adapted the reward into a curriculum where the
first stage has no positional domain randomization and reshaped the gripper–to-cube reward term to
provide a denser reward signal over larger distances, encouraging progress toward the cube rather
than only near contact. In the second stage, AURA reintroduced the positional domain randomiza-
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AURA
AURA

w/o schema
AURA

w/o VDB
AURA

single-agent CurricuLLM∗ Eureka∗∗

Training-launch
Success Rate 99% 47% 38% 7% 31% 12%

Table 2: Training-launch success rate comparing AURA and its ablated variants. All evaluations are
conducted with GPT-4.1, as the original models used in the baselines are deprecated at the time of assessment.
∗CurricuLLM is evaluated on generating rewards for Berkeley Humanoid locomotion. ∗∗Eureka is evaluated
on reward-function generation for ANYmal. Eureka’s overall generation success rate across all its
environments is 49%, with simpler tasks contributing more successes.

tion and increased the weight of the box to target reward. This led to a final policy which could
consistently push the cube to the target location with over a 90% success rate.

4.4 Real-World Experiments

Hardware Setup: We use a custom 0.6 m-tall agile humanoid with 5-DoF legs and 3-DoF arms
[54]. RL policies run at 50 Hz with sensors and actuators at 500 Hz. The end-to-end policy uses no
estimators or low-level control beyond servo internal impedance controllers. Fig. 1 shows a policy
generated by AURA deployed on real hardware in a zero-shot setting. When tasked with an outdoor-
capable locomotion policy, AURA generated a four-stage curriculum progressing from flat terrain
with low randomization to rough terrain with high randomization, diverse velocity commands, and
significant external perturbations. The resulting policy demonstrated zero-shot outdoor deployment,
successfully handling uneven terrain and maintaining consistent gait tracking. The robot achieved
walking at 0.18 m/s and average gait frequency of 1.91 Hz. It withstood substantial perturbations,
recovering from lateral pushes up to 0.38 m/s and from being physically pushed off a 50 mm high
platform without falling, which surpassed the performance of existing manual tuned controllers [54].

4.5 Generation Success and Efficiency

4.5.1 Curriculum Generation Table 2 presents the success rates of training runs for AURA, its
ablated variants, and baseline methods including CurricuLLM and Eureka. AURA achieves a 99%
success rate, outperforming all other methods and demonstrating the benefit of schema validation
and RAG which allow for consistent generation of curriculums with hundreds of parameters and
sometimes over ten unique reward terms.

4.5.2 Computation Efficiency AURA requires only a single training launch per stage, since
schema validation and VDB-guided retrieval ensure that nearly all generated curricula are executable
on the first training launch. In contrast, Eureka and CurricuLLM each generate multiple training
launches per stage, 16 and 5, respectively, and retain only the best-performing successful run. As a
result, AURA initiates far fewer training runs than either CurricuLLM or Eureka, leading to much
lower compute cost for multi-stage workflows while still achieving competitive performance.

5 Conclusion

This paper introduces AURA (Autonomous Upskilling with Retrieval-Augmented Agents), a
schema-centric curriculum RL framework leveraging multi-agent LLM architectures and RAG. By
abstracting complex GPU-accelerated training pipelines into schema-validated YAML workflows,
AURA reliably automates the design and refinement of multi-stage curricula, enabling policy train-
ing with iterative improvement. Empirical evaluations demonstrate that AURA outperforms base-
line methods, achieving a higher generation success rate and superior policy performance across
locomotion and manipulation tasks, and effective zero-shot hardware deployment. Overall, AURA
represents an advancement toward scalable and generalizable prompt-to-policy training frameworks,
showing clear promise in reducing reliance on manual reward engineering and iterative tuning for
complex, real-world robotic control.
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6 Limitations

While AURA automates reward design, domain randomization, and curriculum-driven policy train-
ing, a nontrivial amount of human effort is still required. Setting up the MuJoCo simulation en-
vironment, defining observation spaces, action spaces, and environment state variables, remains a
manual process that can impact policy success. Similarly, deploying the final policy to real hardware
requires careful integration and validation.

Human Evaluation: Although AURA’s training pipeline generates curricula autonomously, it still
relies on human feedback at the end of each iteration to provide qualitative assessment of the de-
ployed policy. While naively applying Vision-Language Models often fails to accurately describe
robot data [55, 56], recent frameworks demonstrate promising methods for automatically analyzing
robot trajectories and delivering feedback [57, 58]. These could be used in future work to fully
automate feedback between iterations.

Exploration and VDB Content Bias: While AURA leverages its VDB to improve training reliabil-
ity, this dependence introduces potential bias. If the database lacks diversity or contains inaccurate
human feedback, subsequent retrieval-augmented generations may reinforce suboptimal patterns.
AURA’s curriculum search process has the potential to converge prematurely on a narrow set of
solutions. Future work could incorporate explicit exploratory sampling of curricula designs or ad-
versarial selection of prior examples to counteract this VDB content bias.

References
[1] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone. Curriculum learning

for reinforcement learning domains: A framework and survey. Journal of Machine Learning
Research, 21(181):1–50, 2020.

[2] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforcement learning
for versatile, dynamic, and robust bipedal locomotion control. The International Journal of
Robotics Research, 44(5):840–888, 2025.

[3] D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation for
quadrupedal robots, 2023. URL https://arxiv.org/abs/2306.14874.

[4] C. Li, E. Stanger-Jones, S. Heim, and S. Kim. Fld: Fourier latent dynamics for structured
motion representation and learning, 2024. URL https://arxiv.org/abs/2402.13820.

[5] S. Narvekar and P. Stone. Learning curriculum policies for reinforcement learning. arXiv
preprint arXiv:1812.00285, 2018.

[6] T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala, J. Humplik, M. Wulfmeier, S. Tun-
yasuvunakool, N. Y. Siegel, R. Hafner, M. Bloesch, K. Hartikainen, A. Byravan, L. Hasen-
clever, Y. Tassa, F. Sadeghi, N. Batchelor, F. Casarini, S. Saliceti, C. Game, N. Sreendra,
K. Patel, M. Gwira, A. Huber, N. Hurley, F. Nori, R. Hadsell, and N. Heess. Learning agile
soccer skills for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):
eadi8022, 2024. doi:10.1126/scirobotics.adi8022.

[7] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath. Real-world humanoid
locomotion with reinforcement learning. Science Robotics, 9(89):eadi9579, 2024.

[8] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. CoRR, abs/2109.11978, 2021. URL https://arxiv.

org/abs/2109.11978.

[9] S. Chen, B. Zhang, M. W. Mueller, A. Rai, and K. Sreenath. Learning torque control for
quadrupedal locomotion, 2023. URL https://arxiv.org/abs/2203.05194.

9

https://arxiv.org/abs/2306.14874
https://arxiv.org/abs/2402.13820
http://dx.doi.org/10.1126/scirobotics.adi8022
https://arxiv.org/abs/2109.11978
https://arxiv.org/abs/2109.11978
https://arxiv.org/abs/2203.05194


[10] S. Jang and M. Han. Combining reward shaping and curriculum learning for training agents
with high dimensional continuous action spaces. In 2018 International Conference on Infor-
mation and Communication Technology Convergence (ICTC), pages 1391–1393. IEEE, 2018.

[11] S. M. Nguyen, N. Duminy, A. Manoury, D. Duhaut, and C. Buche. Robots learn increasingly
complex tasks with intrinsic motivation and automatic curriculum learning: Domain knowl-
edge by emergence of affordances, hierarchical reinforcement and active imitation learning.
KI-Künstliche Intelligenz, 35:81–90, 2021.

[12] M. Li, J. Zhang, and E. Bareinboim. Causally aligned curriculum learning. arXiv preprint
arXiv:2503.16799, 2025.

[13] E. Sayar, G. Iacca, O. S. Oguz, and A. Knoll. Diffusion-based curriculum reinforcement
learning. Advances in Neural Information Processing Systems, 37:97587–97617, 2024.

[14] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe. Curriculum learning: A survey. International
Journal of Computer Vision, 130(6):1526–1565, 2022.

[15] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and C. Fan. Learning to utilize shap-
ing rewards: A new approach of reward shaping. Advances in Neural Information Processing
Systems, 33:15931–15941, 2020.

[16] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[17] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

[18] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code
as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[19] J. Sun, Q. Zhang, Y. Duan, X. Jiang, C. Cheng, and R. Xu. Prompt, plan, perform: Llm-based
humanoid control via quantized imitation learning. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 16236–16242. IEEE, 2024.

[20] C. E. Mower, Y. Wan, H. Yu, A. Grosnit, J. Gonzalez-Billandon, M. Zimmer, J. Wang,
X. Zhang, Y. Zhao, A. Zhai, et al. Ros-llm: A ros framework for embodied ai with task
feedback and structured reasoning. arXiv preprint arXiv:2406.19741, 2024.

[21] R. Mon-Williams, G. Li, R. Long, W. Du, and C. G. Lucas. Embodied large language mod-
els enable robots to complete complex tasks in unpredictable environments. Nature Machine
Intelligence, pages 1–10, 2025.

[22] G. R. Team, S. Abeyruwan, J. Ainslie, J.-B. Alayrac, M. G. Arenas, T. Armstrong, A. Balakr-
ishna, R. Baruch, M. Bauza, M. Blokzijl, et al. Gemini robotics: Bringing ai into the physical
world. arXiv preprint arXiv:2503.20020, 2025.

[23] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv
preprint arXiv:2310.12931, 2023.

[24] K. Ryu, Q. Liao, Z. Li, P. Delgosha, K. Sreenath, and N. Mehr. Curricullm: Automatic task
curricula design for learning complex robot skills using large language models. In IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 4470–4477, 2025. doi:
10.1109/ICRA55743.2025.11128783.

10

http://dx.doi.org/10.1109/ICRA55743.2025.11128783
http://dx.doi.org/10.1109/ICRA55743.2025.11128783


[25] Y. J. Ma, W. Liang, H. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani, and D. Jayaraman.
Dreureka: Language model guided sim-to-real transfer. In Robotics: Science and Systems
(RSS), 2024.

[26] O. Erak, O. Alhussein, S. Naser, N. Alabbasi, D. Mi, and S. Muhaidat. Large language model-
driven curriculum design for mobile networks. In 2024 IEEE/CIC International Conference on
Communications in China (ICCC), page 179–184. IEEE, Aug. 2024. doi:10.1109/iccc62479.
2024.10682015. URL http://dx.doi.org/10.1109/ICCC62479.2024.10682015.

[27] Q. Liao, B. Zhang, X. Huang, X. Huang, Z. Li, and K. Sreenath. Berkeley humanoid: A
research platform for learning-based control. arXiv preprint arXiv:2407.21781, 2024.
urlhttps://arxiv.org/abs/2407.21781.

[28] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid,
et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In
Conference on Robot Learning, pages 2165–2183. PMLR, 2023.

[29] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Haus-
man, B. Ichter, S. Jakubczak, T. Jones, L. Ke, S. Levine, A. Li-Bell, M. Mothukuri, S. Nair,
K. Pertsch, L. X. Shi, J. Tanner, Q. Vuong, A. Walling, H. Wang, and U. Zhilinsky. π0: A
vision-language-action flow model for general robot control, 2024. URL https://arxiv.

org/abs/2410.24164.

[30] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
T. Kreiman, C. Xu, J. Luo, Y. L. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh,
C. Finn, and S. Levine. Octo: An open-source generalist robot policy, 2024. URL https:

//arxiv.org/abs/2405.12213.

[31] H. Huang, F. Liu, L. Fu, T. Wu, M. Mukadam, J. Malik, K. Goldberg, and P. Abbeel. Otter:
A vision-language-action model with text-aware visual feature extraction, 2025. URL https:

//arxiv.org/abs/2503.03734.

[32] J. Wang, E. Shi, H. Hu, C. Ma, Y. Liu, X. Wang, Y. Yao, X. Liu, B. Ge, and S. Zhang.
Large language models for robotics: Opportunities, challenges, and perspectives. Journal of
Automation and Intelligence, 2024.

[33] L. Cao. Ai robots and humanoid ai: Review, perspectives and directions. arXiv preprint
arXiv:2405.15775, 2024.

[34] R. Wang, Z. Yang, Z. Zhao, X. Tong, Z. Hong, and K. Qian. Llm-based robot task planning
with exceptional handling for general purpose service robots. In 2024 43rd Chinese Control
Conference (CCC), pages 4439–4444. IEEE, 2024.

[35] S. Rho, L. Smith, T. Li, S. Levine, X. B. Peng, and S. Ha. Language guided skill discovery.
arXiv preprint arXiv:2406.06615, 2024.

[36] J. Auerbach, D. Aydin, A. Maesani, P. Kornatowski, T. Cieslewski, G. Heitz, P. Fernando,
I. Loshchilov, L. Daler, and D. Floreano. Robogen: Robot generation through artificial evolu-
tion. In Artificial Life Conference Proceedings, pages 136–137. MIT Press One Rogers Street,
Cambridge, MA 02142-1209, USA journals-info . . . , 2014.
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A Implementation and testing Details

A.1 Training via Proximal Policy Optimization (PPO)

We train the control policy with PPO, which constrains the policy update to prevent destructive
parameter jumps. Let

rt(θ) =
πθ
(
at | st

)
πθold

(
at | st

)
denote the probability ratio between the new and old policies, and let At be the generalized advan-
tage estimate at timestep t. The clipped surrogate objective is

LCLIP(θ) = Et
[
min

(
rt(θ)At, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
At

)]
,

where ϵ is the clipping parameter (we use ϵ = 0.2 unless otherwise noted). During training, we
maximize LCLIP with Adam, using entropy regularization for exploration and a value–function loss
with coefficient cv .

A.2 Score Calculation

During one evaluation run, we launch N = 1024 parallel environments and roll each for a horizon
of Tmax = 3000 simulation steps (or until failure). All three metrics are normalized to [0, 1] for
direct comparability.

Survival Score. Let Ti ∈ [1, Tmax] denote the number of steps survived by environment i. The
Survival Score is the mean fractional episode length

Ssurv =
1

N

N∑
i=1

Ti
Tmax

.

Linear-Velocity Tracking Score. For step t in environment i let vcmd
t,i ∈ R2 be the commanded

planar velocity and vloc
t,i ∈ R2 the robot’s actual planar COM velocity expressed in the local frame.

Define the squared tracking error

et,i =
∥∥vcmd

t,i − vloc
t,i

∥∥ 2

2
.

The YAML exponential decay entry with σ = 0.1 corresponds to the per-step reward

rlin
t,i = exp

(
−et,i/(2σ2)

)
, σ = 0.1.

Aggregating over time and averaging across the batch yields the normalized Linear-Velocity Track-
ing Score

Slin =
1

N

N∑
i=1

1

Tmax

Ti∑
t=1

rlin
t,i.

Summary. The triplet
(
Ssurv,Slin,Sair

)
captures robustness (survival), command-following fi-

delity, and gait coordination, respectively, and forms the basis of all quantitative comparisons in
the main paper.

A.3 Task Prompts

These five user prompts were used as task inputs to AURA for evaluating its curriculum generation
success rate. For baseline comparisons, we used the prompts provided in each baseline’s open-
source repository to generate their respective training files.
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Task 1: Robust Bipedal Walking with Perturbation Resilience

I want to use a staged approach to train a humanoid robot for advanced locomotion with external

↪→ perturbations.

I want to deploy this policy onto hardware and walk outside, and I want the steps to be even (between the

↪→ right and left legs) and smooth.

I want the walking to be very robust to both uneven terrain and perturbations.

I want the training to have equal capabilities for forward and backwards walking, with an absolute max

↪→ speed being 0.5m/s and max yaw being 0.5rad/s.

You must generate AT LEAST 2 stages for this task.

Task 2: Terrain-Adaptive Walking

I want to use a multi-stage curriculum to train a humanoid robot to walk over irregular terrain, such as

↪→ small rocks and low barriers.

The robot must learn to lift its feet high enough to avoid tripping and maintain a steady gait while

↪→ stepping over obstacles of varying height (up to 0.02m).

The policy should be deployable outdoors and remain balanced when landing on slightly angled or unstable

↪→ surfaces.

I want both forward and backward walking to be supported, with even step timing and foot clearance.

You must generate AT LEAST 2 stages for this task.

Task 3: Precision Jumping Between Platforms

I want to use a staged approach to train a humanoid to jump onto and off of elevated platforms.

The policy should support both single jumps (from ground to platform) and double-jumps (from one platform

↪→ to another).

The target jump height is 0.05m with target air time of 0.5s.

I want landing posture and knee angle to remain stable, and I want the robot to absorb impacts smoothly.

The final policy should transfer to hardware and be tested over rigid and slightly deformable platforms.

You must generate AT LEAST 2 stages for this task.

Task 4: Rhythmic Forward-Backward Hopping

I want to train a humanoid robot to perform continuous forward-backward hopping in a rhythmic, energy-

↪→ efficient manner.

The hops should alternate directions every few steps and maintain even left-right force distribution.

I want the robot to be robust to mild perturbations during flight and landing.

Deployment should be feasible on a physical robot outdoors, with stability maintained on moderately uneven

↪→ terrain.

Hop height should range between 0.05-0.1 meters with a frequency of ~1.5 Hz.

You must generate AT LEAST 2 stages for this task.

Task 5: Stable Lateral Walking with Perturbation Handling

I want to use a staged curriculum to train a humanoid robot to perform lateral (sideways) walking in both

↪→ directions.

The walking should be smooth and balanced, with equal step distances between the left and right legs.

The policy should be robust to minor terrain irregularities and moderate lateral perturbations.

Maximum lateral velocity should be capped at +-0.3 m/s, and yaw rotation should be minimized during side-

↪→ stepping.

I want the final policy to be deployable on hardware and capable of sustained lateral walking in outdoor

↪→ environments.

You must generate AT LEAST 2 stages for this task.

B Robot Environment Descriptions

B.1 Custom Humanoid

The custom humanoid locomotion environment exposes the velocity command, joint positions, pro-
jected gravity vector, last action, phase, and max foot height as observations and actuator gains,
friction coefficients, body mass, COM position, foot contact geometry, initialization configuration,
and roughness as domain randomization parameters. The simulation setup was adapted from the
model in [59]. AURA is run for five iterations, with each iteration generating a new curriculum.
Custom humanoid locomotion is evaluated with AURA Tune, which starts with the Berkeley Hu-
manoid reward and adapts it into a curriculum that works on the custom humanoid hardware, and
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AURA Blind, which generates a curriculum from scratch. All environments are run at 50Hz, and
the curriculum is limited to 400M training timesteps.

B.2 Berkeley Humanoid

For the Berkeley humanoid task, AURA uses the MuJoCo Playground’s Berkeley Humanoid en-
vironment. Berkeley Humanoid’s MuJoCo Playground policy is trained as detailed in [60]. The
environment is run at 50Hz and both policies train over 300M steps.

B.3 BoosterT1 Humanoid

For BoosterT1 locomotion, AURA is trained and evaluated in the MuJoCo Playground BoosterT1
simulation environment, is run at 50Hz, and trains for 300M steps. BoosterT1’s MuJoCo Playground
policy is trained as detailed in [60].

B.4 UR5e Manipulator

The environment observations and domain randomizations are consistent with MuJoCo Play-
ground’s manipulator environment for the Franka Emika Panda (but with a UR5e robot). The envi-
ronment frequency is 30Hz, and the curriculum is limited to 300M training steps. This environment
is used for two tasks. In the pushing cube task the robot must push a block to a target position both
of which are randomized in a 30cm by 30cm region (following CurricuLLM experiments). To be
considered a success the center of the cube must be within 3cm of the target point. The stacking
cube task begins with a cube in the gripper and the robot must place the cube on top of another block
which is randomized in a 30cm by 30cm region.

C AURA LLM Agent Prompt Templates

The prompts below define the instruction templates used by AURA’s LLM agents throughout the
curriculum generation and training process. These templates structure how input data, such as user
task prompts, stage descriptions, and past training artifacts, are transformed into schema-compliant
outputs like workflows, configuration files, and reward functions. Placeholders in the form of
<INSERT ...> denote dynamic inputs that are automatically populated by the AURA framework
at runtime with the appropriate content, ensuring that each prompt remains generalizable while re-
taining full contextual relevance for the target task.

C.1 Curriculum LLM

You are an expert in reinforcement learning, CI/CD pipelines, GitHub Actions workflows, and curriculum

↪→ design. Your task is to generate a complete curriculum with clearly defined steps for a multi-

↪→ stage (staged curriculum learning) training process for a humanoid robot in simulation.

**MOST IMPORTANT DIRECTIONS:**

**<INSERT_TASK_PROMPT_HERE>**

Determine the number of stages based on the complexity of the task described.

You are to generate as follows:

1. A GitHub Actions workflow file that orchestrates the entire staged training process.

2. For each training stage that appears in the workflow, a separate text file containing in-depth, rich

↪→ details that describe the objectives, expected changes to reward files, configuration file

↪→ modifications, and overall curricular rationale.

-------------------------------------------------

**Important Guidelines:**

- IMPORTANT! The example baseline content parameters comes from a vector database of a past training

↪→ workflow that’s similar to the current task. Update them to fit the user’s task more.

- IMPORTANT! Here is the EXPERT evaluation of the example training workflow results: <

↪→ INSERT_EVALUATION_HERE>.

- Use this evaluations by the EXPERT to update the parameters.

- **Workflow File Generation:**

16



Generate a workflow file named ‘generated_workflow.yaml‘ that orchestrates the staged training process.

↪→ This file must:

- Begin with the baseline structure provided via the placeholder

‘<INSERT_WORKFLOW_YAML_HERE>‘ and then be modified to support multiple training stages with explicit

↪→ jobs for training and feedback (if feedback is needed).

- Use the example reward file (provided via ‘<INSERT_REWARD_YAML_HERE>‘) and example config file (

↪→ provided via ‘<INSERT_CONFIG_YAML_HERE>‘) as context.

- Use the example randomize file (provided via ‘<INSERT_RANDOMIZE_YAML_HERE>‘) as context to understand

↪→ the domain randomization parameters for the scene.

- Remember the workflow should use the same generated config, reward, and randomize that it defines in

↪→ the stage description for training.

- **Detailed Stage Description Files:**

In addition to the workflow file, for every stage that is generated in the workflow, you must output a

↪→ corresponding text file (named ‘generated_stage{X}_details.txt‘, where ‘{X}‘ is the stage number

↪→ ) that contains very rich, in-depth details. Each of these text files must include:

- A clear description of the training objective for that stage.

- Precise descriptions of modifications to the config environment disturbances.

- Explicit details on the expected modifications to the reward file.

- A precise explanation of the configuration changes.

- A discussion on the terrain/environment context (e.g., flat_scene, mixed_scene, height_scene).

- Which gate to use (walk or jump)

- How this stage fits into the overall curriculum progression

- Specify if the stage is starting from new or resuming from a checkpoint

-------------------------------------------------

**Additional Context:**

- The robot and training environment context is provided via <INSERT_ROBOT_DESCRIPTION_HERE>

- The generated workflow file must include explicit, detailed inline comments.

- IMPORTANT! The number of stages in the workflow and the stage descriptions generated should match

↪→ exactly

-------------------------------------------------

**Output Format:**

**THIS IS THE MOST IMPORTANT PART! YOU MUST FOLLOW THESE DIRECTIONS EXACTLY! Return your output as

↪→ separate YAML blocks (and nothing else) in the following format:**

file_name: "generated_workflow.yaml"

file_path: "../workflows/generated_workflow.yaml"

content: |

# [The updated workflow.yaml content here with inline comments]

file_name: "generated_stage1_details.txt"

file_path: "../prompts/tmp/generated_stage1_details.txt"

content: |

# [The in-depth description for Stage 1 with explicit detail on training objectives, reward configuration

↪→ adjustments, and other parameters]

C.2 RAG

These prompts are used within the RAG Block to query, retrieve, and select suitable past workflows
and training files to be used as context for the current task.

C.2.1 VDB Query LLM
You are an expert in reinforcement learning for robotics. You are given a high-level task description

↪→ related to training a robot policy.

Your job is to generate a short and precise **natural language query** that summarizes the core attributes

↪→ of the task. This query will be used to retrieve similar configurations, rewards, and workflows

↪→ from a vector database.

Your output should:

- Be a **single sentence**.

- Focus on **task type**, **terrain**, **number of curriculum stages**, and any **specific tuning goals**

↪→ (e.g., push resistance, fine-tuning, checkpoint reuse).

- Avoid code, markdown, or explanations.

Task Description:

<INSERT_TASK_PROMPT_HERE>

Output:
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(One-line query only)

C.2.2 Selector LLM
You are an expert in reinforcement learning and robot curriculum design.

You are provided with:

- A high-level training task.

- A collection of YAML files from various past runs (each associated with a run ID). These include

↪→ multiple stages of ‘reward‘, ‘config‘, and ‘randomize‘ YAMLs, as well as one or more ‘workflow‘

↪→ YAMLs per run.

Your job is to **select only the files needed** to best support the new multi-stage workflow generation.

↪→ You should pick:

- Exactly one ‘workflow.yaml‘ file.

- One ‘reward.yaml‘, ‘config.yaml‘, and ‘randomize.yaml‘ file for **each** stage of the task (e.g., stage

↪→ 1-3).

Output a JSON object mapping descriptive keys (e.g., ‘workflow‘, ‘reward_stage1‘, etc.) to the exact

↪→ filenames you want to keep (from the file list provided). All other files will be deleted.

------------------------

## TASK DESCRIPTION

**<INSERT_TASK_PROMPT_HERE>**

------------------------

## HERE ARE THE EVALUATIONS FOR THE CANDIDATE RUNS:##

<INSERT_EVALUATIONS_HERE>

**Pick the runs whose evaluations look the most promising for the task.**

------------------------

## AVAILABLE FILES (filename -> truncated preview)

<INSERT_EXAMPLES_HERE>

------------------------

Your output must be in the following format:

‘‘‘json

{

"workflow": "run123_workflow.yaml",

"reward_stage1": "run123_reward_stage1.yaml",

"config_stage1": "run123_config_stage1.yaml",

"randomize_stage1": "run123_randomize_stage1.yaml",

}

**If the run you are choosing has more stages, also put them into the output json block.**

Do NOT include any other text outside the fenced JSON block.

C.3 Per Stage LLM

You are an expert in reinforcement learning, CI/CD pipelines, GitHub Actions workflows, and curriculum

↪→ design. Your task is to generate the configuration files for a specific stage of a multi-stage (

↪→ staged curriculum learning) training process for a humanoid robot in simulation. For this prompt,

↪→ you are generating files for Stage {X} (for example, Stage 1, Stage 2, etc.). Use the inline

↪→ comments from the workflow file (provided in <INSERT_WORKFLOW_YAML_HERE>) for Stage {X} to guide

↪→ your modifications.

<INSERT_TASK_PROMPT_HERE>

-------------------------------------------------

**THESE ARE THE MOST IMPORTANT DIRECTIONS TO FOLLOW! Stage {X} Description:**

<INSERT_STAGE_DESCRIPTION_HERE>

-------------------------------------------------

**All reward, config, and randomize example files are selected from a vector database. Each of the

↪→ examples have been selected by a higher-level LLM due to their fitting parameters for the task.**

**If you believe the provided files from the database are sufficiently good for the training of the given

↪→ stage, you may choose to use the same parameters**

For the reward file:

- Use the content from <INSERT_REWARD_YAML_HERE> as a starting point.
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- **Preserve all reward function keys** from the baseline. You must include every reward term from the

↪→ original file in this stage’s reward file.

- You may adjust the scalar weight (value) of each reward term to suit the stage. For keys that are not

↪→ relevant at this stage, it is acceptable to set their values to 0.0 (effectively disabling them)

↪→ while preserving the structure.

- If additional reward terms are necessary to support the stage goal, you may add new ones. New terms must

↪→ use only the allowed function types listed below.

- **Allowed Functions (only use these functions when building reward expressions):**

<INSERT_SCHEMA_REWARD_EXPRESSIONS>

The top-level key in the reward file must be ‘reward:‘.

- Add inline comments next to any changes, new reward terms, or adjustments explaining how they support

↪→ the stage goal.

**Context of variables provided for reward functions based on the environment:**

<INSERT_REWARD_VARS_HERE>

- **Only the variables defined here can be used in the reward function calculations!**

**Here is an in depth example and explanation for creating reward functions:**

<INSERT_REWARD_EXAMPLE_HERE>

- These examples show the format of how to build our yaml based reward functions, and its equivalent in

↪→ python. You have to use this style closely for new reward generation.

Notes:

- Input values to a reward function when setting a variable (e.g. lift_thresh: "0.2"), has to be a string.

↪→ For example, in the lift_thresh case, even though it is setting lift_thresh

to be a float 0.2, you still need to set it with a string.

- MAKE SURE to understand the variables, their types, and their shape for using them in reward functions.

- IN PARTICULAR, double check for vectors the shapes much so there is no error!

- **IMPORTANT! REMEMBER! THIS IS JAX! You must use jax functions, conditions, arrays, etc for everything

↪→ you generate in the reward function.**

- Expressions like "vector: "rot_up - [0, 0, 1]" are not valid, you must use "rot_up - jp.array([0.0,

↪→ 0.0, 1.0])"

- USE VECTOR OPERATIONS!: In jax, you cannot use conditional statements like and, or, you have to use

↪→ jax operations such as jp.where, or use bitwise such as &, |, etc.

- **You do not need to calculate a total reward! Just define individual reward functions, aggregating the

↪→ rewards is handled elsewhere.**

-------------------------------------------------

For the configuration file:

- **Make sure to follow the exact structure of the config file, including the top-level keys. One of the

↪→ top level classes is ‘environment:‘, don’t forget it!**

- Use the current baseline structure from <INSERT_CONFIG_YAML_HERE> as a reference for the structure and

↪→ expected parameters.

- **Keep the structure of the config file.**

- **Do not add or remove any parameters**; only adjust the values to support the staged curriculum

↪→ learning process.

- Adjust trainer parameters (e.g., learning rate, batch size, etc.) to support training stability as the

↪→ curriculum advances.

- **resume_from_checkpoint:** This should be set to false if a new staged training is being done. If

↪→ continueing from a previous checkpoint, this flag should be set to true.

- refer to the stage description for which option to choose.

- Ensure that ‘batch_size‘ and ‘num_envs‘ remain powers of 2.

- The network parameters must remain consistent across all stages.

- Choose ‘scene_file‘ from the options (flat_scene, mixed_scene, and height_scene) according to the stage

↪→ difficulty.

- Add inline comments next to any parameter changes explaining your reasoning.

- The ‘randomize_config_path‘ should be the corresponding generated randomize yaml file path for each

↪→ stage.

-------------------------------------------------

**Baseline Randomization File for Context:**

<INSERT_RANDOMIZE_YAML_HERE>

-------------------------------------------------

**Instructions for the randomize.yaml file:**

- **Preserve the overall file structure and all keys from the baseline randomization file.**

- The randomize file contains parameters for domain randomization, including:

- **geom_friction:** Randomizes friction properties for all geometry objects.

- **actuator_gainprm:** Randomizes actuator gain parameters.

- **actuator_biasprm:** Randomizes actuator bias parameters.

- **body_ipos:** Randomizes body initial positions (center of mass positions).

- **geom_pos:** Randomizes the positions of specific geometries.
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- **body_mass:** Randomizes the body mass (scaling factors or additional offsets).

- **hfield_data:** Randomizes the heightfield (terrain) data values.

- Read the inline comments for each parameters in the randomize.yaml example for details on what the

↪→ parameters do.

- You may adjust the numeric parameter values (e.g., the min and max values in the uniform distributions)

↪→ to better support the training stage’s objectives while keeping the structure intact.

- For parameters that are modified, add inline comments next to the changed values explaining how the

↪→ adjustments support the stage goals (e.g., improved robustness to disturbances, adapting friction

↪→ to better simulate challenging terrain, etc.).

- The top-level key of the file must remain "randomization:".

- **The randomization file path must match the one specified in the config yaml.**

-------------------------------------------------

**Output Format:**

**THIS IS THE MOST IMPORTANT PART! YOU MUST FOLLOW THESE DIRECTIONS EXACTLY! Return your output as

↪→ separate YAML blocks (and nothing else) in the following format:**

file_name: "generated_reward_stage{X}.yaml"

file_path: "../rewards/generated_reward_stage{X}.yaml"

content: |

# [The complete reward file for Stage {X} with inline comments]

file_name: "generated_config_stage{X}.yaml"

file_path: "../configs/generated_config_stage{X}.yaml"

content: |

# [The complete configuration file for Stage {X} with inline comments]

file_name: "generated_randomize_stage{X}.yaml"

file_path: "../randomize/generated_randomize_stage{X}.yaml"

content: |

# [The complete randomization file for Stage {X} with inline comments]

Do not output any text or explanation outside these YAML blocks.

-------------------------------------------------

C.4 Feedback LLM

Feedback integration for curriculum learning:

This is currently the Stage {current_stage} training feedback process based on the workflow.

Based on the previous training step’s reward metrics and configurations, update the reward and

↪→ configuration files for improved performance.

The metrics either 1) give information about the training process (e.g. entropy loss, policy loss, etc.),

↪→ or

2) give the value each reward term contributes to the overall reward; the name of the eval/* for the

↪→ reward matches exactly with that of the reward term in the reward file’s functions.

Look for specific metrics, such as the loss and penalty values, to guide the updates (e.g. if loss numbers

↪→ are too volatile, reduce the learning rate).

The above feedback prompt, together with the next stage’s description and all the stage’s metrics log
file, is prepended to the Per-Stage LLM prompt for use by the Feedback LLM.

D AURA Outputs

D.1 AURA Tune
D.1.1 Configuration YAML
environment:

scene_file: "../../../og_bruce/flat_scene.xml" # Always flat terrain for this curriculum

reward_config_path: "../rewards/generated_reward_stage1.yaml" # Path to Stage 1 reward file

obs_noise: 0.03 # Increased observation noise for robust sensorimotor learning

imu_disturbs: true # Enable IMU disturbances to enforce robust policy learning

init_rand: true # Extensive randomization in joint angles, body position, and mass

big_min_kick_vel: 0.05 # Enable full big kick perturbations for robustness

big_max_kick_vel: 0.12 # Enable full big kick perturbations for robustness

big_kick_interval: 80 # Randomized interval for big kicks (see randomization file for full range)

small_min_kick_vel: 0.01 # Enable small kicks for continuous disturbance

small_max_kick_vel: 0.03 # Enable small kicks for continuous disturbance

small_kick_interval: 10 # Randomized interval for small kicks (see randomization file for full range)

fixed_command: false # Commands randomized for full velocity/yaw tracking
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command_lin_vel_x_range: [-0.5, 0.5] # Full forward/backward walking speed range

command_lin_vel_y_range: [0.0, 0.0] # No lateral walking required

command_ang_vel_yaw_range: [-0.5, 0.5] # Full yaw tracking range

command_stand_prob: 0.15 # Robot is rarely asked to stand still; mostly active walking

cutoff_freq: 3.0

deadband_size: 0.01

low_cmd_boost_scale: 1.5

gait_frequency: [2.0, 2.25] # Less range for better convergence and tracking

gaits: ["walk"] # Use walk gait for consistency

foot_height_range: [0.03, 0.05] # Smaller swing heights for better conergence of feet phase tracking

render:

resolution: [640, 480]

randomize_seed: 25

n_steps: 3000

view: "track_com"

fps: null

plot_actions: true

plot_observations: true

plot_rewards: true

static_actions:

10: 0

11: 0

12: 0

13: 0

14: 0

15: 0

trainer:

num_timesteps: 400_000_000 # Full stage budget: all training in a single phase (max allowed)

num_evals: 13 # Evaluations every ~30M steps for robust progress monitoring

reward_scaling: 1

episode_length: 3000 # Longer episodes for sustained walking under disturbance

normalize_observations: true

action_repeat: 1

unroll_length: 20

num_minibatches: 32

num_updates_per_batch: 4

discounting: 0.97 # Higher discount for long-term stability and recovery

learning_rate: 8.0e-5 # High learning rate for fast convergence

entropy_cost: 5.0e-3 # Moderate entropy to encourage exploration

num_envs: 8192

batch_size: 512

seed: 7 # New random seed for diversity

clipping_epsilon: 0.18 # Slightly decreased for smaller updates in high-variance training

randomization:

randomize: true

randomize_config_path: "../randomize/generated_randomize_stage1.yaml" # Path to Stage 1 randomization

↪→ file

artifact:

resume_from_checkpoint: false # Training starts from scratch for single-stage curriculum

master_path:

abs_parent_path: null

folder_prefix: "tmp/run"

folder_index: -1

checkpoint:

checkpoint_dir: "model"

folder_index: -1

policy_params_fn: null

ppo_network:

policy_hidden_layer_sizes: [512, 256, 128] # Keep network structure consistent

value_hidden_layer_sizes: [512, 256, 128] # Keep network structure consistent

activation: "swish"

policy_obs_key: "state"

value_obs_key: "privileged_state"

D.1.2 Reward YAML
reward:

tracking_lin_vel:
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inputs:

command_xy: "command[0:2]"

local_vel_xy: "local_vel[0:2]"

evaluations:

- type: "sum_square"

parameters:

vector: "command_xy-local_vel_xy"

output: "error"

- type: "exponential_decay"

parameters:

error: "error"

sigma: 0.09 # Tighter sigma for precise bidirectional velocity tracking; enforces true walking/

↪→ stepping

combination:

type: "last"

scale: 1.5 # Full reward for tracking commanded velocity (serves as survival reward as well)

default_reward: 0.0

tracking_ang_vel:

inputs:

command_yaw: "command[2]"

base_ang_vel: "base_ang_vel"

evaluations:

- type: "norm_L2"

parameters:

vector: "command_yaw-base_ang_vel"

output: "error"

- type: "exponential_decay"

parameters:

error: "error"

sigma: 0.1 # Tight sigma for accurate yaw tracking; prevents shuffling and enforces turning

combination:

type: "last"

scale: 1.0 # Full reward for yaw tracking

default_reward: 0.0

lin_vel_z:

inputs:

vel_z: "xd.vel[0, 2]"

evaluations:

- type: "quadratic"

parameters:

value: "vel_z"

weight: 1.0

scale: 0.0 # Penalize vertical velocity not used

default_reward: 0.0

ang_vel_xy:

inputs:

ang_vel_xy: "xd.ang[0, :2]"

evaluations:

- type: "sum_square"

parameters:

vector: "ang_vel_xy"

scale: -0.15 # Stronger penalty for roll/pitch instability under perturbations

default_reward: 0.0

orientation:

inputs:

rot_up_xy: "rot_up[0:2]"

evaluations:

- type: "sum_square"

parameters:

vector: "rot_up_xy"

scale: -2.0 # Strong penalty for non-upright posture (enforces survival under heavy disturbance)

default_reward: 0.0

torques:

inputs:

torques: "qfrc_actuator"

evaluations:

- type: "norm_L2"
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parameters:

vector: "torques"

- type: "norm_L1"

parameters:

vector: "torques"

combination:

type: "sum"

scale: -0.00004 # Slightly increased penalty for excessive actuator effort

default_reward: 0.0

action_rate:

inputs:

action: "action"

last_act: "last_act"

evaluations:

- type: "sum_square"

parameters:

vector: "action - last_act"

scale: -0.01 # Slight increase to encourage smoother actions under disturbance

default_reward: 0.0

feet_air_time:

inputs:

feet_air_time: "feet_air_time"

first_foot_contact: "first_foot_contact"

lift_thresh: "0.2"

command_norm: "command_norm"

evaluations:

- type: "weighted_sum"

parameters:

values: "(feet_air_time - lift_thresh) * first_foot_contact"

weights: 1.0

output: "rew_air_time"

- type: "binary"

parameters:

condition: "command_norm > 0.05"

reward_value: "rew_air_time"

else_value: 0.0

scale: 2.0 # Enabled: rewards proper stepping and air time during walking

default_reward: 0.0

stand_still:

inputs:

commands_norm: "commands_norm"

joint_angles: "joint_angles"

default_pose: "default_pose"

evaluations:

- type: "norm_L1"

parameters:

vector: "joint_angles - default_pose"

output: "norm_joint"

- type: "binary"

parameters:

condition: "commands_norm < 0.01"

reward_value: "norm_joint"

else_value: 0.02

scale: -0.35 # Enabled: penalizes deviation from rest pose only when robot is commanded to stand still

default_reward: 0.0

termination:

inputs:

done: "done"

step: "step"

evaluations:

- type: "binary"

parameters:

condition: "done & (step < 500)"

reward_value: -1.0

else_value: 0.0

scale: 1.0 # Maintain strong penalty for early episode termination/falling

default_reward: 0.0
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foot_slip:

inputs:

contact: "foot_contact"

foot_linear_velocity: "feet_site_linvel[:, 0:2]"

foot_angular_velocity: "feet_site_angvel"

evaluations:

- type: "norm_L2"

parameters:

vector: "foot_linear_velocity"

output: "linear_vel_norm"

- type: "norm_L2"

parameters:

vector: "foot_angular_velocity"

output: "angular_vel_norm"

combination:

type: "weighted_sum"

parameters:

vectors: ["linear_vel_norm * contact", "angular_vel_norm * contact"]

weights: [1.0, 1.0]

scale: -0.2 # Decreased penalty; enforces proper ground contact and reduces unnecessary foot motion

default_reward: 0.0

feet_phase:

inputs:

foot_z: "feet_pos[:, 2]"

rz: "rz"

first_foot_contact: "first_foot_contact"

evaluations:

- type: "sum_square"

parameters:

vector: "(foot_z - rz)"

output: "phase_err"

- type: "exponential_decay"

parameters:

error: "phase_err"

sigma: 0.001 # Ultra-tight sigma for phase adherence; enforces symmetric, phase-locked walking

combination:

type: "last"

scale: 1.2 # More reward to encourge closer tracking of the feet phase

default_reward: 0.0

feet_clearance:

inputs:

foot_linear_velocity: "feet_site_linvel"

foot_z: "feet_site_pos[:,2]"

max_foot_height: "max_foot_height"

evaluations:

- type: "norm_L2"

parameters:

vector: "foot_linear_velocity[..., :2]"

output: "vel_norm"

- type: "absolute_difference"

parameters:

value1: "foot_z"

value2: "max_foot_height"

output: "delta_z"

- type: "weighted_sum"

parameters:

values: "delta_z * vel_norm"

weights: 1.0

output: "clearance_cost"

combination:

type: "last"

scale: 0.02 # Enabled: encourages sufficient swing foot clearance, important for robust stepping

default_reward: 0.0

D.1.3 Randomization YAML
randomization:

geom_friction:

- target: ALL

distribution:

uniform:

24



minval: [0.6, 0.0, 0.0]

maxval: [1.1, 0.0, 0.0] # Broadened friction range for robustness to slip and diverse ground

# Wider friction range supports learning stable walking under variable slip conditions

actuator_kp_kd:

- target: ALL

distribution:

uniform:

minval: [-10, 0]

maxval: [25, 0] # Increased variability in actuation dynamics for robustness

operation: add

# Broader range encourages adaptability to actuator uncertainties

body_ipos:

- target: random_mass

distribution:

uniform:

minval: [-0.03, -0.03, -0.03]

maxval: [0.03, 0.03, 0.03] # Greater initial posture diversity

operation: add

# Supports robustness to initialization errors and real-world pose variability

geom_pos:

- target: [’foot_contact_l’, ’foot_contact_r’]

distribution:

uniform:

minval: [-0.004, -0.004, -0.004]

maxval: [0.005, 0.004, 0.004] # Increased foot geometry randomization

operation: add

# Prevents overfitting to a single contact configuration, improves generalization

body_mass:

- target: ALL

distribution:

uniform:

minval: 0.9

maxval: 1.1 # Full mass randomization for robustness

operation: scale

- target: random_mass

distribution:

uniform:

minval: 0.0

maxval: 1.0 # Full range for extra random mass

# Full mass randomization ensures robustness to payload and hardware variation

hfield_data:

- target: ALL

distribution:

uniform:

minval: 0

maxval: 1 # No terrain randomization; always flat in this curriculum

operation: scale

# Flat surface only, no heightfield variation for this stage

D.2 AURA Blind
D.2.1 Configuration YAML
environment:

scene_file: "../../../og_bruce/flat_scene.xml" # Flat terrain only as specified for Stage 1

reward_config_path: "../rewards/generated_reward_stage1.yaml"

obs_noise: 0.03 # High observation noise for robustness

imu_disturbs: true # Enable IMU noise/disturbances

init_rand: true # Randomized initial pose for generalization

big_min_kick_vel: 0.05 # Enable strong kicks from the start for robustness

big_max_kick_vel: 0.2 # Increase max kick velocity for challenging perturbations

big_kick_interval: 80 # More frequent big kicks

small_min_kick_vel: 0.02 # Frequent, moderate small kicks

small_max_kick_vel: 0.05 # Frequent, moderate small kicks

small_kick_interval: 10 # Frequent small kicks for disturbance rejection

fixed_command: false

command_lin_vel_x_range: [-0.5, 0.5] # Full forward/backward command range for symmetric walking
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command_lin_vel_y_range: [0.0, 0.0] # No lateral walking for this stage

command_ang_vel_yaw_range: [-0.5, 0.5] # Full yaw command range for left/right turning

command_stand_prob: 0.1 # Small chance of stand command for stability

cutoff_freq: 3.0

deadband_size: 0.01

gait_frequency: [2.0, 2.6] # Increased gait frequency for more natural/dynamic walking

gaits: ["walk"]

foot_height_range: [0.04, 0.08] # Larger step height range for generalization

max_foot_height: 0.08

render:

resolution: [640, 480]

randomize_seed: 52

n_steps: 3000

view: "track_com"

fps: null

plot_actions: true

plot_observations: true

plot_rewards: true

static_actions:

10: 0

11: 0

12: 0

13: 0

14: 0

15: 0

trainer:

num_timesteps: 400_000_000 # Single-stage, full allocation as per curriculum

num_evals: 13 # ~30M steps per evaluation for efficiency

reward_scaling: 1

episode_length: 2000 # Sufficiently long to practice balance and command tracking for locomotion

normalize_observations: true

action_repeat: 1

unroll_length: 20

num_minibatches: 32

num_updates_per_batch: 4

discounting: 0.97

learning_rate: 1.0e-4 # High learning rate for fast initial learning

entropy_cost: 5.0e-3 # Slightly higher entropy for exploration at early stage

num_envs: 8192

batch_size: 512

seed: 5

clipping_epsilon: 0.2

randomization:

randomize: true

randomize_config_path: "../randomize/generated_randomize_stage1.yaml"

artifact:

resume_from_checkpoint: false # Start from scratch for single-stage curriculum

master_path:

abs_parent_path: null

folder_prefix: "tmp/run"

folder_index: -1

checkpoint:

checkpoint_dir: "model"

folder_index: -1

policy_params_fn: null

ppo_network:

policy_hidden_layer_sizes: [512, 256, 128]

value_hidden_layer_sizes: [512, 256, 128]

activation: "swish"

policy_obs_key: "state"

value_obs_key: "privileged_state"

D.2.2 Reward YAML
reward:

tracking_xy_velocity:

inputs:

command_xy: "command[0:2]"
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local_vel_xy: "local_vel[0:2]"

evaluations:

- type: "sum_square"

parameters:

vector: "command_xy-local_vel_xy"

output: "error"

- type: "exponential_decay"

parameters:

error: "error"

sigma: 0.20 # Stricter velocity tracking (was 0.25); better command following for both forward/

↪→ backward walking

combination:

type: "last"

scale: 3.0

default_reward: 0.0

tracking_yaw:

inputs:

command_yaw: "command[2]"

base_ang_vel: "base_ang_vel"

evaluations:

- type: "norm_L2"

parameters:

vector: "command_yaw-base_ang_vel"

output: "error"

- type: "exponential_decay"

parameters:

error: "error"

sigma: 0.16 # Stricter yaw tracking (was 0.2); ensures accurate directional control

combination:

type: "last"

scale: 2.0

default_reward: 0.0

feet_lift_time:

inputs:

feet_air_time: "feet_air_time"

first_foot_contact: "first_foot_contact"

lift_thresh: "0.2"

command_norm: "command_norm"

evaluations:

- type: "weighted_sum"

parameters:

values: "(feet_air_time - lift_thresh) * first_foot_contact"

weights: 1.0

output: "rew_air_time"

- type: "binary"

parameters:

condition: "command_norm > 0.05"

reward_value: "rew_air_time"

else_value: 0.0

combination:

type: "last"

scale: 1.6

default_reward: 0.0

feet_swing_height:

inputs:

swing_peak: "swing_peak"

first_foot_contact: "first_foot_contact"

max_foot_height: "max_foot_height"

evaluations:

- type: "sum_square"

parameters:

vector: "(swing_peak / max_foot_height - 1.0) * first_foot_contact"

output: "height_err"

combination:

type: "last"

scale: 0.0

default_reward: 0.0

symmetry:
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inputs:

joint_angles: "joint_angles"

evaluations:

- type: "norm_L1"

parameters:

vector: "joint_angles[0:12] - joint_angles[12:24]"

combination:

type: "last"

scale: -0.18 # Penalizes asymmetric joint movement; crucial for symmetric bidirectional walking

default_reward: 0.0

foot_scuff:

inputs:

contact: "first_site_contact"

foot_linear_velocity: "feet_site_linvel"

foot_angular_velocity: "feet_site_angvel"

evaluations:

- type: "norm_L2"

parameters:

vector: "foot_linear_velocity"

output: "linear_vel_norm"

- type: "norm_L2"

parameters:

vector: "foot_angular_velocity"

output: "angular_vel_norm"

combination:

type: "weighted_sum"

parameters:

vectors: ["linear_vel_norm * contact", "angular_vel_norm * contact"]

weights: [1.0, 1.0]

scale: -0.018

default_reward: 0.0

linear_velocity_z:

inputs:

vel_z: "xd.vel[0, 2]"

evaluations:

- type: "quadratic"

parameters:

value: "vel_z"

weight: 1.0

scale: -0.08

default_reward: 0.0

angular_velocity_xy:

inputs:

ang_vel_xy: "xd.ang[0, :2]"

evaluations:

- type: "sum_square"

parameters:

vector: "ang_vel_xy"

scale: -0.15

default_reward: 0.0

orientation_penalty:

inputs:

rot_up_xy: "rot_up[0:2]"

evaluations:

- type: "sum_square"

parameters:

vector: "rot_up_xy"

scale: -3.0

default_reward: 0.0

penalty_torques:

inputs:

torques: "qfrc_actuator"

evaluations:

- type: "norm_L2"

parameters:

vector: "torques"

- type: "norm_L1"
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parameters:

vector: "torques"

combination:

type: "sum"

scale: -0.0005

default_reward: 0.0

action_smoothness:

inputs:

action: "action"

last_act: "last_act"

evaluations:

- type: "sum_square"

parameters:

vector: "action - last_act"

scale: -0.07

default_reward: 0.0

low_command_stand:

inputs:

commands_norm: "commands_norm"

joint_angles: "joint_angles"

default_pose: "default_pose"

evaluations:

- type: "norm_L1"

parameters:

vector: "joint_angles - default_pose"

output: "norm_joint"

- type: "binary"

parameters:

condition: "commands_norm < 0.05"

reward_value: "norm_joint"

else_value: 0.02

scale: -0.4

default_reward: 0.0

falling_penalty:

inputs:

done: "done"

step: "step"

evaluations:

- type: "binary"

parameters:

condition: "done & (step < 1000)"

reward_value: -1.0

else_value: 0.0

scale: 2.0

default_reward: 0.0

alive:

inputs: {}

evaluations:

- type: "binary"

parameters:

condition: "True"

reward_value: 1.0

else_value: 0.0

scale: 1.0

default_reward: 0.0

D.2.3 Randomization YAML
randomization:

geom_friction:

- target: ALL

distribution:

uniform:

minval: [0.4, 0, 0]

maxval: [1.0, 0, 0]

# Wide friction range for robust contact handling on flat terrain

actuator_gainprm:

- target: ALL
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distribution:

uniform:

minval: [-25, 0, 0, 0, 0, 0, 0, 0, 0, 0]

maxval: [25, 0, 0, 0, 0, 0, 0, 0, 0, 0]

operation: add

# Wide gain range for actuator robustness (sim2real transfer)

actuator_biasprm:

- target: ALL

distribution:

uniform:

minval: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

maxval: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

operation: add

body_ipos:

- target: random_mass

distribution:

uniform:

minval: [-0.022, -0.022, -0.022]

maxval: [0.022, 0.022, 0.022]

operation: add

# Increased range (+-0.022m) for robustness to random COM shifts, critical for perturbation rejection

geom_pos:

- target: [’foot_contact_l’, ’foot_contact_r’]

distribution:

uniform:

minval: [-0.005, -0.005, -0.005]

maxval: [0.005, 0.005, 0.005]

operation: add

# Increased range for geometry randomization, improves robustness to foot contact placement errors

body_mass:

- target: ALL

distribution:

uniform:

minval: 0.9

maxval: 1.1

operation: scale

- target: random_mass

distribution:

uniform:

minval: 0.2

maxval: 0.8

hfield_data:

- target: ALL

distribution:

uniform:

minval: 0

maxval: 1

operation: scale

# No terrain randomization; included for completeness, but flat_scene.xml disables heightfield effects
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