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Abstract: Behavior Cloning is a powerful tool for acquiring skill policies from
task demonstrations. However, exploiting spatial symmetries and invariances is
important to enable efficient learning and generalization. In this paper, we show
that a hand-centric representation of action chunks and proprioceptive observa-
tions yield denoising vector fields that are invariant to global rigid transforma-
tions for a Flow Matching objective. With this SE(3)-invariance of the underly-
ing representation to be learned, policies can be trained on equivariant skills with
significantly fewer demonstrations while achieving better generalization without
the need for specialized model architectures. We demonstrate the advantage of
a hand-centric action representation on a low-tolerance visuomotor manipulation
task using a simple multi-layer perceptron for the policy.
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Figure 1: In this paper we show that hand-centric action representations (bottom branch •) can be
used to train guaranteed equivariant control policies agnostic of the neural network architecture used.
This leads to significantly more sample efficient and robust learning when compared to methods that
rely on network architectures to encourage equivariant control policies (top branch •).

1 Introduction

Many manipulation tasks such as grasping and peg insertion exhibit symmetries that should allow for
sample efficient learning and robust generalization [1]. Consequently, a number of recent works in
robot learning have focused on learning policies in a way that leverages these symmetries. Typically,
these works focus on the use of architectural inductive biases which leverage equivariance in the
underlying task but do not guarantee equivariance [2, 3, 4, 5, 6, 7, 8]. At the same time, robotics
practitioners have long observed the key influence different action representations play in policy
learning [9, 10, 11, 12] with hand-centric representations found to be more amenable for learning in
terms of sample efficiency and robustness [13, 14, 15] than, for example, absolute actions.



In this paper, we provide the theoretical underpinning explaining the influence of action represen-
tations. In particular, we prove mathematically that actions expressed in a global reference frame
exhibit no symmetry with regards to global transformations and that the common relative action
representation exhibits translation-invariance but not rotation-invariance. In contrast, we show that
hand-centric representations more recently adopted by some works exhibit invariance to global trans-
formations to the scene. Based on these findings we propose a framework leveraging hand-centric
action and observation representations to arrive at policies that are provably inherently equivariant to
global transformations irrespective of the architecture used. In this framework, absolute actions and
observations are first transformed into a hand-centric reference frame, in which they are invariant
to global transformations. The policy is then trained in this hand-centric frame. Finally, actions are
transformed back to the original reference frame for execution (see Figure 1). We demonstrate the
efficacy of our equivariant policy learning framework in both simulated and real-world robot ma-
nipulation experiments and show that our approach comprehensively outperforms more traditional
action representations as well as established approaches which use architectural biases to leverage
task symmetries. In particular, we present the following two contributions:

1. A rigorous analysis of how the selection of action representation, i.e. absolute, relative, and
hand-centric, for Cartesian control affects the denoising flow to be learned with respect to
rigid global transformations.

2. We introduce Hand-Centric Flow Matching, which builds upon the analysis in contribution
1 and results in an SE(3)-invariant denoising flow that inherently generalizes to out-of-
distribution global transformations.

2 Background

In this section, we introduce definitions of action representations, SE(3)-equivariance, and the Flow
Matching objective used for the analysis in Sec. 3.

2.1 Action Representations for Cartesian Control

Policies are typically modeled to directly output absolute or relative robot poses with a fixed world
frame as a reference, e.g. the robot’s base. This is due to the fact that proprioceptive observations
and action data are oftentimes obtained this way. Accordingly, an absolute action at future time
step k is defined as the pose of the robot’s hand R with respect to a fixed world frame W , i.e.
ak := WTRk

= [WRRk
,WpRk

] ∈ SE(3), where time step k = 0 denotes the time of the current
control step. We furthermore consider relative actions that are defined as the delta between two
absolute actions, i.e. ∆ak = (∆pk,∆rk) := (WpRk

−WpR0 , r(
WR⊤

R0

WRRk
)). Here, r(ARB) ∈ R3

denotes an axis-angle representation of a rotation vector that rotates frame A into B through the
tangent space of SO(3).

Hand-centric actions are computed by changing the frame of reference from a fixed world frame to a
frame fixed to the robot’s hand. For this, we use the frame of the robot’s hand at the time of control,
i.e. R0, such that a hand-centric action at time step k is defined by

Rak := R0TRk
= WT−1

R0

WTRk
= WT−1

R0
ak. (1)

As a result, the translation R0pRk
and rotation R0RRk

components of a hand-centric action, respec-
tively, can be expressed as functions of translations and rotations in the fixed world frame:

R0pRk
= WR⊤

R0
(WpRk

− WpR0
), R0RRk

= WR⊤
R0

WRRk
. (2)

Figure 2 illustrates the hand-centric representation for an example insertion task. We furthermore de-
fine proprioceptive observations analogue to the actions in the corresponding representation. Thus,
we define world-centric proprioceptive observations by op

−h := WTR−h
, which are used in combi-

nation with absolute and relative actions. Hand-centric proprioceptive observations are given by
Rop

−h := R0TR−h
= WT−1

R0

WTR−h
= WT−1

R0
op
−h. (3)
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Figure 2: (a) A demonstrated insertion trajectory recorded in a fixed world frame W . (b) Each
demonstration is structured in multiple chunks with WTR0 corresponding to the pose of the robot
(or hand) at the time of control. (c) We propose to learn hand-centric policies, i.e. representing
proprioceptive observations and actions with respect to the pose of the robot at the time of control.

2.2 SE(3)-Equivariant Policy

Suppose that T̃ = [R̃|p̃] ∈ SE(3) denotes a rigid transformation applied to the pose of the robot’s
hand and its environment. The operator ◦ denotes a composition, such that T̃ ◦ · denotes how
the corresponding observation or action is transformed when the rigid transformation T̃ is applied
to the scene. A Cartesian policy is SE(3)-equivariant iff the action generated from transformed
observations is equivalent to the transformed action generated from the original observations, i.e.

a(T̃ ◦ op, T̃ ◦ ov) ≡ T̃ ◦ a(op,ov). (4)

We separately denote proprioceptive observations op and exteroceptive observations ov, respec-
tively. Proprioceptive observations contain information about the current and past poses of the
robot’s hand, while exteroceptive observations such as RGB-D images capture information about
the robot’s environment.

2.3 Flow Matching for Policies in Euclidean Space

The objective of Flow Matching is to learn a probability distribution based on samples provided by
modeling the flow of probabilities. Effectively, a Flow Matching model learns to transform a simple
source distribution p0 into a target distribution p1. Using Rectified Linear Flow [16, 17], a sample
from p0 is transformed into a sample from p1 on a straight line. In Robotics, this technique is used
to learn policies generating action a based on observation o, which in effect models the conditional
distribution p1 = p(a|o) from data D, i.e. task demonstrations. If the action is defined in a Euclidean
space1, the probability path is defined as a(t) = ta+(1− t)ε, with a ∼ p1 and ε ∼ p0. The vector
field transforming samples from p0 towards p1 is then defined as ∇ta(t) = a − ε. Using a deep
neural network fθ, we are interested in accurately predicting the flow vector for a given noisy action
a(t), the denoising time t ∈ [0, 1], and the observation o. Thus, the training objective is to minimize

L =
∑
D

|fθ(aD(t), t,oD)−∇taD(t)|22. (5)

In this paper, we use Flow Matching to learn a policy that generates an action chunk, i.e. a1:K =
πθ(o

p,ov), which is a sequence of actions with horizon K:

πθ(o
p,ov) = argmax

a1:K

p(a1:K |op,ov), (6)

by modeling the conditional data distribution using Rectified Linear Flow.

1The Flow Matching objective requires random variables to be defined in Euclidean space as the denoising
path is defined to be on a straight line.
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Figure 3: (a) An originally demonstrated action chunk (top) and the same action chunk after applying
a rigid transformation (bottom). (b-d) Denoising flows for the 2D position of the first action a1 of the
action chunk (orange), and all training samples for a1 in the corresponding control representation
(blue). (b): Absolute actions – Denoising flow is not invariant; (c): Relative actions – Denoising
flow is translation-invariant only; (d): Hand-centric actions – Denoising flow is SE(3)-invariant.

3 Guaranteed Equivariant Control via SE(3)-Invariant Flow

Learning skills that are equivariant with respect to global transformations is substantially simplified
if those symmetries are exploited. We argue that equivariance of absolute actions is the result of
an underlying invariance of the observation-action mapping when changing the frame of reference
to a hand-centric representation. In this section, we aim to exploit this by using the hand-centric
action representation introduced in Sec. 2.1 to train an invariant policy Rπθ to construct an outer
policy a1:K(op,ov) that is guaranteed to generate equivariant absolute actions ak based on absolute
observations op

−h (cf. Fig. 1). In particular, this is done by

1. op → Rop: Transforming absolute observations into a hand-centric representation via (3),

2. Rπθ(
Rop,ov): Inferring hand-centric actions from the learned policy,

3. Ra1:K → a1:K : Transforming inferred actions into absolute actions via the inverse of (1).
Theorem 1. Let Ra1:K = Rπθ(

Rop,ov) be a sequence of hand-centric actions and let ov be
composed of eye-in-hand observations, then a1:K(op,ov) is guaranteed to be SE(3)-equivariant
as defined in (4) if ak is computed via the hand-centric action with ak(o

p,ov) = op
0
Rak(o

p,ov).

In the following, we show in two steps that Theorem 1 is true. First, in Sec. 3.1 we show that
the output of the hand-centric policy, i.e. the hand-centric action chunk, has to be invariant to
global transformations for Theorem 1 to hold. Second, we prove in Sec. 3.2 that the input to the
hand-centric policy is invariant to global transformations, inducing that the output of the hand-
centric policy is invariant as well and therefore guaranteeing that the resulting absolute actions are
equivariant.

3.1 Hand-Centric Actions Yield SE(3)-Invariant Flow

In order to prove that Theorem 1 is true, we compute how the resulting absolute action transforms
as a result of a global transformation T̃ :

ak(T̃ ◦ op, T̃ ◦ ov) = T̃ op
0
Rak(T̃ ◦ op, T̃ ◦ ov). (7)

Lemma 1. Theorem 1 holds if the hand-centric policy is invariant to global transformations with
Rπθ(T̃ ◦ Rop, T̃ ◦ ov) ≡ Rπθ(

Rop,ov).
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Proof. Assuming invariance of the hand-centric policy, (7) can be reformulated to

ak(T̃ ◦ op, T̃ ◦ ov) = T̃ op
0
Rak(o

p,ov) = T̃ ak(o
p,ov)

⇒ a1:K(T̃ ◦ op, T̃ ◦ ov) = T̃ ◦ a1:K(op,ov).
(8)

This is an important result as it shows that the underlying denoising flow ∇t
Ra(t) that is required

to transform samples from a source distribution p0 to the target distribution p1 has to be invariant
to global transformations itself. We hypothesize that the invariance of the denoising flow that is
to be predicted with a neural network significantly simplifies learning and lets the policy inherently
generalize skills to global transformations that have not been seen during training. This is in contrast
to directly learning absolute policies using equivariant encoder-decoder architectures as in related
work [6, 7], which facilitates learning equivariant mappings, but does not guarantee the policy to be
equivariant. In addition to this analysis, we provide a closed-form derivation of the target denoising
flow for absolute, relative, and hand-centric actions in App. A based on the proposition that the
training data is generated for an equivariant skill. We find that using absolute actions results in a
denoising flow that does not have any symmetry properties. However, using relative actions makes
the denoising flow invariant to global translations. The derivation also proves that using hand-centric
actions in fact results in a denoising flow that is invariant to global transformations. Fig. 3 illustrates
the symmetry properties of the denoising flow for the corresponding action representation. It is
worth noting that the invariance in the model output to be learned is independent of the model input,
which renders a hand-centric action representation useful even without guaranteeing invariance of
the model input.

3.2 Hand-Centric Observations Yield SE(3)-Invariant Model Input

The next step of the proof is to show that the hand-centric policy is SE(3)-invariant. For this, the
input to the policy is required to be invariant to global transformations.

Lemma 2. Let the proprioceptive observation Rop and the exteroceptive eye-in-hand observa-
tion ov be SE(3)-invariant with T̃ ◦ Rop = Rop, T̃ ◦ ov = ov, then the hand-centric policy
Rπθ(

Rop,ov) is SE(3)-invariant.

Proof. Applying the invariances of the inputs yields Rπθ(T̃ ◦ Rop, T̃ ◦ ov) = Rπθ(
Rop,ov).

Therefore, we can conclude that the resulting absolute actions are SE(3)-equivariant if the hand-
centric observations are SE(3)-invariant. A single hand-centric proprioceptive observation Rop

−h

at time step −h is defined by (3). Applying a global transformation to that observation results in

T̃ ◦ Rop
−h = (T̃ WTR0

)−1 T̃ WTR−h
= WT−1

R0

WTR−h
= Rop

−h. (9)

Hence, hand-centric proprioceptive pose observations are by-design invariant to global transforma-
tions. As noted in Theorem 1, we furthermore assume exteroceptive observations to be gathered
from an eye-in-hand perspective, e.g. from a camera that is rigidly attached to the robot’s hand. A
central proposition to this paper is that eye-in-hand observations ov are inherently invariant to rigid
transformations, i.e. T̃ ◦ ov ≡ ov. This is due to the fact that an eye-in-hand camera, the robot’s
end-effector, and objects of interest for the task do not move relative to each other under global rigid
transformations [13].

4 Experimental Validation

We validate the practical implications of training a hand-centric policy against other action represen-
tations in two experiments. For this, we are particularly interested in comparing sample-efficiency
and generalization capabilities on closed-loop control problems with eye-in-hand observations of
the scene.
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Number of Demos: 5 10 20 40 60 80 100 100 – O.O.D.

Hand-Centric-Flow 0.01 0.25 0.56 0.79 0.90 0.94 0.98 0.96 (-2 %)
Relative-Action-Flow 0.00 0.00 0.05 0.16 0.42 0.48 0.58 0.01 (-98 %)
Absolute-Action-Flow 0.00 0.00 0.01 0.06 0.08 0.12 0.14 0.02 (-86 %)
Equivariant-DiffPo [7] 0.00 0.01 0.03 0.07 0.12 0.18 0.27 0.12 (-56 %)

Table 1: 2D Peg-in-Hole Insertion: Comparison of success rates over number of demonstrations used
for training of four different policy architectures. Success on out-of-distribution (O.O.D.) scenes is
reported as a measure of generalization capability. All success rates result from 100 trials.

4.1 Implementation

We note that the introduced hand-centric behavior cloning framework does not impose a particular
network architecture to guarantee equivariance of the resulting robot skill as the representation al-
ready guarantees equivariance with respect to a transformation in the fixed world frame irrespective
of the model architecture. Because of this, we choose to regress the hand-centric denoising flow
with a simple multi-layer perceptron (MLP). In both experiments, the demonstrated absolute actions
and observations are first pre-processed into chunks a1:K and op

−H:0, respectively. H denotes the
history of observations. Next, each pair of chunks is converted into a hand-centric representation by
using (1) and (3). For vision-based observations as used in Sec. 4.3, we train end-to-end a ResNet-18
architecture [18] to encode image observations and feed the image features to the MLP.

4.2 2D Peg-in-Hole Insertion

To better understand the impact of the data representation used for behavior cloning, we use a min-
imal virtual setup of a 2D peg that is supposed to be inserted into a hole as illustrated in Figure
2. Rollouts are simulated only kinematically in this toy example with a collision checker to assess
the success of the rollout. In order to emulate eye-in-hand observations of the scene in a sim-
plified way, we explicitly provide two key points on the hole expressed in the robot frame, i.e.
ov = (R0pG1

,R0pG2
). This can be interpreted as circumventing a vision encoder by hard-coding

spatial image features. Demonstrations are collected from a trajectory optimization pipeline [19] by
discarding invalid solutions and gathering successful trajectories in a dataset. A successful rollout
fully inserts the 2D peg into the hole without colliding with the edges and corners of the hole.

Sample-Efficiency. Table 1 reports the success rates of trained policies for an increasing number of
demonstrations used for training. We observe that the hand-centric representation (Hand-Centric-
Flow) leads to higher success rates with few demonstrations and reaches success rates of up to 0.98
with 100 demonstrations. On the other hand, we observe that directly learning an absolute policy
(Absolute-Action-Flow) does not capitalize on the equivariance in the underlying task. We further-
more observe a better sample-efficiency for relative actions (Relative-Action-Flow) compared to
absolute actions, which indicates that the translation invariance of the denoising flow (cf. Figure 3)
simplifies learning, though it still falls significantly short of the sample-efficiency of our approach.
Last, we evaluate Equivariant Diffusion Policy (Equivariant-DiffPo) [7] on the same data, observ-
ing an improved sample-efficiency compared to the absolute policy without an equivariant network
architecture. However, the sample-efficiency of Equivariant-DiffPo is significantly lower compared
to Hand-Centric-Flow.

Generalization. We test the generalization capability of the learned policies by sampling peg and
hole poses from distributions that are different from the distributions used for generating the training
data (out-of-distribution). More specifically, the training data contains scenes where the peg is in-
serted top-down and sideways, while the out-of-distribution set consists of scenes where the peg has
to be inserted bottom-up. The right-most column of Table 1 reports the success rate of the respective
policy on the out-of-distribution test set. First, we observe that naive approaches using absolute
and relative actions almost drop to zero as they do not leverage the equivariance inherent to the task.
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Figure 4: Experimental setup for the real-world visuomotor manipulation task. With an eye-in-hand
camera providing RGB-D observations, the task is to insert the manipulation blade into tight gaps
and to use sideway-suction to pick thin items from clutter.

Second, Equivariant-DiffPo drops by 56 % compared to the in-distribution performance, which indi-
cates that it partially learned to capture the equivariance of the data. Last, the inherent equivariance
of the hand-centric-flow policy that has been derived theoretically in Sec. 3 is confirmed by the
performance on the out-of-distribution test set, which is in the same range as the performance on the
in-distribution set.

4.3 Real-World Visuomotor Blade Insertion

We validate the practical advantage of using a hand-centric representation for policy learning by
applying the presented approach to a real-world visual servoing task in a warehouse setting. Figure 4
illustrates the task setup consisting of a sideway-suction blade attached to a robot arm. The sideway-
suction blade is used to pick thin items by engaging with the side of such items instead of the
front surface. For this, the blade has to be placed next to the target item such that the suction area
makes contact with it. In densely packed environments as faced in warehouse environments, this
requires an accurate and precise insertion of the sideway-suction blade between the target item and
its neighboring item by feeding back RGB-D observations from an eye-in-hand camera.

I.D. O.O.D.

Hand-Centric-Flow 26/30 5/5
Relative-Action-Flow 19/30 0/5
Absolute-Action-Flow 23/30 0/5

Table 2: 3D Visuomotor Blade Insertion

We train three policies with different action and
observation representations on the same dataset of
N = 6000 demonstrations collected in simulation.
Each trained policy is tested on the same set of 30
real-world, in-distribution (I.D.) scenes. In addi-
tion, we validate our hypothesis of gaining inher-
ent generalization by training a hand-centric policy
by testing all trained policies on real-world, out-of-
distribution (O.O.D.) scenes. While the training data contains demonstrations of the blade pick-
ing upright items by inserting the blade into vertical gaps, the O.O.D. scenes require picking thin
items that are stacked horizontally. Table 2 reports the success rates, showing that the number of
demonstrations was high enough to enable all policies to perform in-distribution. However, only the
hand-centric policy is able to pick thin items from horizontal stacks.

5 Related Work

SE(3)-Equivariance in Policy Learning. Equivariance of skills has been exploited in many dif-
ferent settings of policy learning. SE(3)-equivariant architectures are used as encoder-decoder
modules in network architectures in reinforcement learning settings [20, 21] and in behavior cloning
settings [6, 7]. Such approaches facilitate learning equivariant policies from data, but they do not
constrain the policy to be equivariant. As a result, generalization capabilities are improved but not
guaranteed. We compare the performance of our proposed approach with the Equivariant Diffusion
Policy proposed by Wang et al. [7] in our experimental validation in Sec. 4.
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SE(3)-Invariance in Policy Learning. Exploiting invariances for efficient robot learning has been
explored in a few settings. Huang et al. [22] exploit relative features between point clouds and grasp
poses to define an SE(3)-invariant grasp quality prediction model. Similarly to our approach, Funk
et al. [8] propose to define a denoising flow that is invariant to SE(3) transformations to facilitate
learning. However, they modify the denoising flow corresponding to absolute actions by rotating
the vector field into the predicted hand pose, in fact resulting in a denoising flow that is rotation-
invariant, but not translation-invariant (cf. App. A.4). In this paper, we show that the right choice of
action representation inherently leads to an SE(3)-invariant flow without additional modification of
the flow formulation and without specialized network architectures.

Hand-Centric Learning. While most works rely on absolute or relative action representations
[2, 3, 4, 5, 6, 7, 8, 23], using hand-centric representations has been explored by few works in
robot control. Hsu et al. [13] show that hand-centric (or eye-in-hand) observations are invariant
to global transformations and thus improve generalization capabilities compared to third-person
perspectives. Seo et al. [14] learn gains of an impedance controller in a hand-centric frame to
generalize impedance behavior to global transformations. Chi et al. [15] use hand-centric repre-
sentations for training a diffusion policy as a result of using hand-held grippers for data collection.
While they introduce hand-centric control for practical reasons, we establish connections between
the choice of the action representation and the effect on symmetries to be learned by the underlying
model regardless of the demonstration interface. Most recently, Wang et al. [24] also establish the
connection between hand-centric action representations and the resulting control equivariance for
Diffusion policies. Our work adds more insights into the generalizability of resulting Flow policies
and furthermore shows real-world applicability.

6 Conclusion

This work introduces a theoretically grounded and empirically validated approach to robot policy
learning that achieves guaranteed SE(3)-equivariance through hand-centric action and observation
representations. By framing the learning task in a coordinate system relative to the robot’s hand, the
proposed Hand-Centric Flow Matching exhibits denoising flows that are invariant to global transfor-
mations, thus enabling more robust generalization and higher sample-efficiency compared to abso-
lute and relative representations. Crucially, this invariance holds independently of the neural network
architecture, allowing simple models to outperform more complex equivariant architectures. The ex-
perimental results underline the importance of representation choice in robot learning and establish
hand-centric control as a powerful tool for scalable and generalizable manipulation policies.

However, several directions remain open for exploration. First, the current theory and validation
is partially limited to eye-in-hand observations; extending the approach to third-person or mixed-
view visual inputs would broaden its applicability. Second, although the method was validated on
Cartesian control tasks, many real-world applications require control in joint space or hybrid ac-
tion spaces – integrating hand-centric invariance in these contexts poses an interesting challenge.
Finally, combining the hand-centric framework with reinforcement learning or other policy opti-
mization strategies beyond behavior cloning may offer improved adaptability and performance in
more complex, interactive environments.
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A Action Representations and Symmetries in the Resulting Denoising Flow

A.1 Absolute Actions yield No Symmetries in the Denoising Flow

An absolute action at future time step k is defined as the pose of the robot’s end-effector with respect
to a fixed world frame (typically the base of the robot is used), i.e. ak = WTRk

. We can separate this
action into a translation component WpRk

∈ R3 and an axis-angle rotation component WrRk
∈ R3

to numerically represent actions as vectors in the tangent space of SE(3). As a result, the denoising
flow for the translation component is defined as

∇t
WpRk

(WpRk
) = WpRk

− ε, (10)

with ε ∼ N (0, I). Applying a rigid 3D transformation T̃ = [R̃|p̃] to the scene yields the denoising
vector field transformed with

∇t
WpRk

(T̃ ◦ WpRk
) = R̃WpRk

+ p̃− ε = T̃ ◦ ∇t
WpRk

+ R̃ε− ε. (11)
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The denoising flow depends on the translation p̃ and rotation R̃ applied to the scene. Because
ε is not subject to global transformations, the denoising flow is neither equivariant nor invariant
with respect to global transformations. We furthermore analyze the rotation component of absolute
actions, which results in the following denoising flow

∇t
WrRk

(WrRk
) = WrRk

− ε. (12)

The denoising flow for the rotation transforms in the same way subject to a global transformation:

∇t
WrRk

(T̃ ◦ WrRk
) = r(R̃WRRk

)− ε = T̃ ◦ ∇t
WrRk

+ R̃ε− ε. (13)

Consequently, symmetries that are present in the data are not leveraged when using absolute obser-
vation and action representations. This is also what we observe in our experimental validation (cf.
Sec. 4).

A.2 Relative Actions yield Translation-Invariant Flow

A relative action is defined as the delta between two absolute actions, i.e.

∆ak = (∆pk,∆rk) = (WpRk
− WpR0

, r(WRRk
)− r(WRR0

)). (14)

As for absolute actions, we analyze how the representation of actions affects symmetries in the
resulting denoising flow. For this, we denote the denoising flow of the translation component of a
relative action with

∇t∆pk(∆pk) =
WpRk

− WpR0
− ε. (15)

Applying the global transformation T̃ to the delta action yields

∇t∆pk(T̃ ◦∆pk) = R̃WpRk
+ p̃− R̃WpR0 − p̃− ε = R̃WpRk

− R̃WpR0 − ε. (16)

We see that the denoising flow for the translation component does not depend on global translations
anymore. To complete the analysis, we denote the denoising flow for the rotation component of
relative actions with

∇t∆rk(∆rk) = r(WRRk
)− r(WRR0

)− ε. (17)

Applying the global transformation T̃ to the delta action yields

∇t∆rk(T̃ ◦∆rk) = r(R̃WRRk
)− r(R̃WRR0

)− ε. (18)

While the denoising flow still depends on global rotations, relative actions yield a translation-
invariant flow. Our experimental results in Sec. 4.2 indicate that the translation-invariance improves
sample-efficiency.

A.3 Hand-Centric Actions yield SE(3)-Invariant Flow

Suppose that the robot is currently in absolute pose WTR0
. We then define a hand-centric action at

future step k as
Rak = R0TRk

= WT−1
R0

WTRk
. (19)

This describes the pose of the robot at future step k from the perspective of the current robot pose.
As a result, the translation R0pRk

and rotation R0RRk
components of a hand-centric action, respec-

tively, are computed with
R0pRk

= WR⊤
R0

(WpRk
− WpR0

), R0RRk
= WR⊤

R0

WRRk
(20)

Figure 2 illustrates the hand-centric representation for an example insertion task. The full action
chunk is then defined as a sequence of hand-centric actions with Ra1:K = (Ra1, ...,

RaK). In order
to prove that the SE(3)-invariance of the target flow is satisfied, we analyze separately how the rigid
transformation T̃ affects the denoising flow for the translation and rotation component for a single
prediction step, respectively.

Denoising Flow of the Translation Component. The denoising path for the translation is given by
R0pRk

(t) = tR0pRk
+ (1− t)ε, (21)
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with ε ∼ N (0, I). Consequently, the denoising vector field that we want to model is given by

∇t
R0pRk

(t) = R0pRk
− ε = WR⊤

R0
(WpRk

− WpR0
)− ε. (22)

Now, applying a rigid 3D transformation T̃ = [R̃|p̃] to the scene yields the denoising vector field
transformed with

T̃ ◦ ∇t
R0pRk

(t) = (R̃WRR0)
⊤(R̃WpRk

+ p̃− R̃WpR0 − p̃)− ε

= WR⊤
R0

(WpRk
− WpR0

)− ε = ∇t
R0pRk

(t).
(23)

This shows that the denoising vector field for the translation at any step k is invariant to a global
rigid transformation.

Denoising Flow of the Rotation Component. In order to apply Euclidean Flow Matching for
rotations, we choose to represent 3D rotations by using rotation vectors that are constructed by
scaling the rotation axis v with the rotation angle ϕ of an axis-angle representation, i.e. r(R) =
ϕv ∈ R3. According to Euler’s Rotation Theorem, there is a unique mapping from a rotation
matrix R ∈ R3×3 to an axis-angle representation that lets us construct r(R). In the following, we
interchangeably use R0rRk

= r(R0RRk
) to describe the rotation from the robot’s current pose to

the predicted pose at step k. As a result, the denoising path for the rotation component is given by
R0rRk

(t) = tR0rRk
+ (1− t)ε, (24)

with ε ∼ N (0, I). Consequently, the denoising vector field that we want to model is given by

∇t
R0rRk

(t) = R0rRk
− ε = r(WR⊤

R0

WRRk
)− ε. (25)

Again applying the rigid 3D transformation T̃ = [R̃|p̃] to the scene yields the denoising vector field
transformed with

T̃ ◦ ∇t
R0rRk

(t) = r((R̃WRR0)
⊤R̃WRRk

)− ε

= r(WR⊤
R0

WRRk
)− ε = ∇t

R0rRk
(t).

(26)

With the translation and rotation component of the hand-centric action chunk being SE(3)-invariant,
we conclude that the underlying vector field that we want to capture with our model fθ is in fact
SE(3)-invariant. In figure 3, we illustrate how the choice of the action representation affects the
denoising flow for transformed action chunks. Absolute actions result in SE(3)-equivariant flows
as shown in App. A.1. In contrast, relative actions make the underlying flow translation-invariant.
However, the flow is not rotation-invariant such that the underlying flow transforms upon a global
rigid transformation as shown in App. A.2. Only hand-centric actions yield an SE(3)-invariant
flow that is unaffected by global transformations.

A.4 Denoising Flow in ActionFlow is not SE(3)-Invariant

Next, we analyze the denoising flow of ActionFlow as presented in Funk et al. [8]. It is claimed
that the denoising flow resulting from their formulation is invariant with respect to global SE(3)
transformations. We find that their derivation assumes that the source distributin p0 is affected by
global transformations, which cannot be true if the global transformation itself is unknown. In
fact, the source distribution for the translation component in [8] is defined as a normal distribution
p0 = N (0, I). In the following, we derive how their denoising flow actually transforms under global
SE(3) transformations. For this, we only show that the translation component of the denoising flow
is not SE(3)-invariant, which suffices to show that the overall denoising process is not SE(3)-
invariant. In equation (2) in [8], the denoising path for the translation component is defined with

WpRk
(t) = tWrRk

+ (1− t)ε, (27)

with ε ∼ p0. While using an absolute representation for robot actions as in App. A.1, they modify
the resulting flow by rotating the flow vectors into the frame of the currently predicted robot pose.
In equation (3), they define the denoising flow with

∇t
WpRk

(WpRk
,WRRk

) = WR⊤
Rk

WpRk
− WpRk

(t)

1− t
. (28)
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Figure 5: Success rates on the 2D insertion task presented in Sec. 4.2 across different learning
algorithms and action representations.

We can rewrite this equation by inserting (27) into (28) to obtain

∇t
WpRk

(WpRk
,WRRk

) = WR⊤
Rk

(WpRk
− ε). (29)

We can now analyze how the denoising flow transforms when a global transformation is applied to
the inputs of the flow, i.e.

∇t
WpRk

(T̃ ◦ WpRk
, T̃ ◦ WRRk

) = (R̃WRRk
)⊤(R̃WpRk

+ p̃− ε) = WR⊤
Rk

(WpRk
+ R̃p̃− R̃⊤ε)

̸= ∇t
WpRk

(WpRk
,WRRk

).
(30)

It can be seen that the denoising flow does depend on global translations and rotations and is thus
not SE(3)-invariant.

B Consistency of Success Rates Across Learning Algorithms

While we use Flow Matching in this paper to model the generative process of sampling from the data
distribution, we conduct an ablation study on the impact of the learning approach. Fig. 5 illustrates
the success rates of various policies trained with Flow Matching, Diffusion Modeling [25], and
conditional variational autoencoder (CVAE). We observe that the action representation dominates
the performance over the choice of the learning algorithm. Results reported for Flow Matching are
consistent.
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