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Abstract: We propose Point2Act, which directly retrieves the 3D action point
relevant for a contextually described task, leveraging Multimodal Large Language
Models (MLLMs). Foundation models opened the possibility for generalist robots
that can perform a zero-shot task following natural language descriptions within
an unseen environment. While the semantics obtained from large-scale image and
language datasets provide contextual understanding in 2D images, they struggle
to accurately interpret complex compositional queries and require extensive com-
putation time. Our proposed 3D relevancy fields bypass the high-dimensional fea-
tures and instead efficiently imbue lightweight 2D point-level guidance tailored
to the task-specific action. The multi-view aggregation effectively compensates
for misalignments due to geometric ambiguities, such as occlusion, or semantic
uncertainties inherent in the language descriptions. The output region is highly
localized, reasoning fine-grained 3D spatial context that can directly transfer to an
explicit position for physical action at the on-the-fly reconstruction of the scene.
Our full-stack pipeline, which includes capturing, MLLM querying, 3D recon-
struction, and grasp pose extraction, generates spatially grounded responses in
under 20 seconds, facilitating practical manipulation tasks. Project page

1 Introduction

Robotic systems are increasingly expected to interpret and act on general, context-rich human lan-
guage. Recently, the integration of vision language models (VLMs) – including CLIP [1] and Multi-
modal Large Language Models (MLLMs) – with 3D representations opens new possibilities for par-
tially addressing this problem [2, 3, 4, 5, 6, 7, 8]. Despite their promise, leveraging VLMs exhibits
key challenges in efficiency while concurrently achieving high spatial precision. The high dimen-
sionality of VLM features (e.g., >512) renders the construction of 3D feature fields computationally
expensive and memory-intensive, typically requiring 1–2 minutes per scene. Most importantly, these
models often fail to interpret compositional descriptions and capture contextual nuances [5, 6].

We propose Point2Act, which scrutinizes the task-specific action point in 3D, conditioned on lan-
guage instructions that encompass zero-shot tasks across a broad spectrum. Point2Act suggests that
our ultimate objective is to accurately identify a semantically relevant 3D point for manipulation. In-
stead of the high-dimensional features, we prompt an MLLM to directly produce 2D-relevant points
from multi-view images and efficiently aggregate them to infer 3D-relevant points. The resulting 3D
relevancy field encodes the relevancy information with precise spatial localization (see Figure 3).

To enable real-world deployment, we develop an efficient full-stack pipeline that integrates multi-
view image capture, MLLM querying, 3D scene reconstruction, and grasp pose extraction. While
the point-based interface is token-efficient, querying the MLLM for each view takes approximately
1–2 seconds. We address this latency by carefully pipelining the process, enabling generation of
actionable 3D relevancy fields in about 20 seconds – significantly faster than comparable methods.

To summarize our contributions: (1) Point2Act distills multiview MLLM point outputs into compact
3D relevancy fields for spatial grounding robust to occlusions and view changes; (2) it supports zero-
shot, context-aware tasks with part-aware, spatial, and abstract queries (e.g., “the handle of the red
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Figure 1: Overview of the Point2Act pipeline. We first capture posed images and query the
MLLM [9] with a prompt to predict 2D point annotations on the images. The multiview predic-
tions are distilled into a 3D relevancy field. AnyGrasp [10] proposes grasp candidates, and the most
relevant grasp is selected based on the field. Grasp poses are subsampled for visualization.

mug”, “the center of the monitor stand”, “a dangerous part that can hurt a human hand”); and (3) it
forms a practical system that runs end-to-end in ∼20s, deployable in real-world settings.

2 Method

Point2Act outputs highly localized 3D positions by combining scene context with instruction se-
mantics, enabling context-aware grasping—predicting the appropriate 6-DoF grasp pose to satisfy
a given description. We first present the 3D relevancy field for scene and action-point reconstruc-
tion (Section 2.1), then show how it guides grasp generation (Section 2.2), and finally describe the
efficient, real-world-ready pipeline (Section 2.3). An overview is shown in Figure 1.

2.1 Relevancy Field Distillation from MLLM

We first convert 2D relevancy points from MLLM (e.g., Molmo [9]) into soft masks using a Gaussian
kernel. Using multiview images and relevancy masks, we build a 3D relevancy field, encoding scene
geometry and language-grounded relevancy. Based on Neural Radiance Fields [11] (NeRF), we add
a lightweight MLP to predict relevancy values. The geometry branch is trained on RGB images to
reconstruct scene structure, while the relevancy branch learns from soft masks capturing linguistic
relevance. By aggregating masks from multiple views, the model overcomes occlusions and view-
dependency, producing a precise, view-invariant 3D representation.

2.2 Grasping with Relevancy Fields

After learning the 3D field, we extract action poses corresponding to the instruction by relying
on low-level geometric guidance rather than complex reasoning. We first convert the learned field
into an RGB point cloud by rendering RGB, depth, and relevancy maps from multiple views and
unprojecting them to 3D. This point cloud is fed into AnyGrasp [10] to generate grasp candidates.
To select the most relevant grasp, we filter candidates by retrieving the k = 30 nearest neighbor
points around each grasp center and choose the pose with the most relevant neighbor. This ensures
the grasp is physically feasible and semantically aligned with the instruction.

2.3 Efficient System Design
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Figure 2: System diagram of Point2Act.

We design a pipelined system (Figure 2) that cap-
tures multi-view images with a wrist-mounted camera,
queries an MLLM for language-grounded points, and
concurrently loads NeRF and AnyGrasp [10] to avoid
delays. The 3D field is trained for 300 iterations, with
grasp pose extraction starting at iteration 200 to over-
lap processing. Leveraging lightweight scalar relevancy
supervision, the system converges quickly (Figure 4(a))
and completes the full pipeline in 16.5 seconds.
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Figure 3: Comparison of language grounding methods. The first column shows the RGB image;
others show relevancy scores overlaid (red: high, blue: low). Prompts are below.
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Figure 4: Quantitative results for 3D localization. (a) Localization accuracy of different language
grounding methods. (b) Effectiveness of our multi-view 3D distillation. (c) With multiview integra-
tion, Point2Act produces robust, view-invariant relevant 3D points from noisy MLLM predictions.

3 Experiments

We demonstrate the performance of Point2Act on a wide range of real-world examples for zero-shot
context-aware grasping. We first evaluate the accuracy and efficacy of our relevancy fields (Sec-
tion 3.1) and then discuss the resulting zero-shot grasping performance (Section 3.2). We then illus-
trate further example scenarios that require combining several contextual reasoning (Section 3.3).

3.1 Context-Aware 3D Localization

Advantages of Using MLLM Points for 3D Distillation. We evaluate the use of MLLM-
predicted points as distillation targets for 3D localization, comparing against LERF [3] (multi-scale
CLIP features) and F3RM [5] (MaskCLIP [12] embeddings). After training, each method selects the
most relevant 3D point in the scene. Projection accuracy measures whether this point projects inside
the ground-truth mask across views. As shown in Figures 3 and 4(a), Point2Act captures spatial
cues, relational descriptions, and subtle intent, achieving higher projection accuracy than baselines
with only 50 iterations. This demonstrates fast, precise 3D grounding from sparse, localized signals.

Effectiveness of Multi-view 3D Distillation. Point2Act benefits from multiview information not
only for geometry reconstruction but also for 3D language grounding. To validate this, we compare
Point2Act with a single-view MLLM+Depth baseline. Figures 4(b) and 4(c) illustrate the robustness
of our approach to occlusion and viewpoint variation, even in complex real-world scenes.

3.2 Context-Aware Zero-Shot Robotic Grasping

Leveraging strong localization, Point2Act generates plausible zero-shot grasp poses without task-
specific training. We compare against F3RM, LERF-TOGO, and MLLM+Depth baselines. F3RM
distills CLIP features into 3D fields, while LERF-TOGO parses complex queries into object–part
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Figure 5: Grasping performance overview. Shaded areas indicate failure modes. Grasping perfor-
mance evaluation is evaluated for part-level prompts (left) and context-level prompts (right). LERF*
refers to LERF-TOGO [6] and MLLM* refers to MLLM 2D points with depth unprojection.

Localization Sequence of execution 

“where should I hold this?” “which part is dangerous?”

(a) Tool-Agnostic Safe Handover

Localization Sequence of execution 

“where should I grasp to pick the mug?”
“the best region in the box, to drop a fragile mug”

(b) Context-Aware Pick and Place

Figure 6: Qualitative results of (a) tool-agnostic safe handover and (b) context-aware pick-and-place.
In (a), green shows graspable regions and red marks dangerous parts to avoid. In (b), the system
finds grasp and safe placement areas based on context.

pairs; both lack fine-grained spatial and contextual reasoning. MLLM+Depth uses single-view pre-
dictions, making it vulnerable to occlusions. We evaluate on four real-world scenes with 20 prompts,
grouped into part-level (grasping a specific part, e.g., “handle of the mug”) and context-level (inter-
preting scene context, e.g., “the object that red scissors are pointing at”, or applying commonsense,
e.g., “something to clean the spilled coffee”). The results are shown in Figure 5.

3.3 Downstream Applications

We extend the relevancy field to two channels, allowing Point2Act to handle multiple prompts si-
multaneously. For tool-agnostic safe handover (Fig.6(a)), given prompts such as “Where should I
hold this?” and “Which part is dangerous?”, Point2Act identifies safe grasp points and hazardous
regions to orient tools accordingly. Unlike prior object-specific methods [13, 14, 15], it generalizes
to unseen tools (e.g., utility knife, screwdriver) without additional training. In context-aware pick
and place (Fig. 6(b)), Point2Act locates graspable regions and safe placement areas from separate
prompts, enabling flexible, context-driven manipulation without task-specific tuning.

4 Conclusion

We present Point2Act, a practical and efficient system that combines Multimodal Large Language
Models (MLLMs) with 3D field representations to address the problem of zero-shot, context-aware
grasping. By using point responses as communication media with MLLMs, we distill them into a
highly localized and view-independent 3D relevancy field. This sparse point signal is remarkably
easy to learn, significantly reducing the number of iterations required for 3D field reconstruction.
We demonstrate that the resulting 3D relevancy field enables precise spatial localization, provid-
ing a reliable guidance signal for zero-shot grasping. With our pipelined system design, the full
pipeline runs in under 20 seconds, highlighting the practicality of our approach. Finally, we show
that Point2Act can be extended to multi-channel settings, enabling downstream applications such as
tool-agnostic safe handovers and context-aware pick-and-place.
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