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Abstract: Skill abstraction, the process of learning reusable and temporally ex-
tended behaviors, has emerged as a key focus in robot learning for its potential to
improve sample efficiency and generalization. However, existing methods exhibit
complementary strengths and weaknesses, typically modeling either high-level
semantic intent (‘what to do’) while sacrificing motion fidelity, or fine-grained
motion dynamics (‘how to do it’) while lacking semantic context. To address
these limitations, we introduce Unified Skill Representation (USR) that unifies
both the semantic intent and motion dynamics into a single skill representation.
USR employs a cross-modal VQ-VAE to learn a semantically grounded and dy-
namically aware skill codebook. Furthermore, we propose a decoupled training
framework that reconciles large-scale skill pre-training with practical deployment.
Our approach builds transferable skills from vast, diverse datasets and then trains
a lightweight policy on small, in-domain data. Extensive experiments on the
LIBERO benchmark demonstrate that USR not only achieves near expert-level
performance on the training distribution but also substantially outperforms prior
methods in few-shot transfer to unseen tasks. Our results highlight the impor-
tance of both unifying skill representations and decoupling the training pipeline,
offering a step toward more generalizable and practical robotic agents.
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1 Introduction

A longstanding goal in robot learning is to develop a general-purpose agent capable of rapidly adapt-
ing to novel tasks in a zero-shot or few-shot manner. Recent advances in vision-language foundation
models have demonstrated remarkable success by leveraging powerful, pre-trained representations
for diverse downstream tasks [1, 2, 3, 4]. In robot learning, imitation learning similarly employs
supervised training on demonstration data, analogous to the training of vision-language foundation
models. However, this approach typically yields specialized agents that fail to generalize beyond
their training distribution and lack the ability to transfer their knowledge to new tasks. This limita-
tion underscores the necessity of developing reusable, pretrained representations that can transfer
to new tasks, environments, and embodiments.

Skill abstraction has emerged as a prominent approach toward achieving compact and reusable rep-
resentations of temporally extended behaviors. Existing skill abstraction methods can broadly be
categorized into two types, each exhibiting complementary strengths and limitations. Low-level
skill abstraction methods [5, 6, 7, 8] capture fine-grained motion dynamics directly from action
trajectories. Yet, they lack an explicit understanding of the semantic context, necessitating substan-
tial task-specific data to bridge semantic information and low-level skills during downstream policy
training. Conversely, high-level skill abstraction methods [9, 10, 11, 12] effectively encode seman-
tic intent but often sacrifice motion fidelity. This leads to an oversimplified skill representation that
fails to differentiate dynamically distinct behaviors, severely limiting the diversity of the learned
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Figure 1: Overview of Unified Skill Representation (USR) framework. (Left) Stage I: Unified
Skill Pre-training. Learning a generalizable, unified skill representation from large-scale data.
(Right) Stage II: Downstream Adaptation. Efficiently distilling the unified skill representation
into a lightweight skill prior and policy for the target task. The heatmaps inside the skill encoder
visualize attention maps, showing that the model focuses on task-relevant objects.

skills. To overcome these limitations, it is essential to develop a unified skill representation that
simultaneously integrates high-level semantic intent and low-level motion dynamics.

Furthermore, capturing rich semantic intent typically requires large-scale models trained on exten-
sive, heterogeneous datasets [13, 14]. However, deploying such models in real-world robotic appli-
cations is computationally prohibitive due to strict latency and resource constraints. Consequently, it
is necessary to distill these rich semantics into a lightweight model to enable fast, resource-efficient
inference. This challenge has remained largely unexplored in existing skill-conditioned robot learn-
ing literature [9, 10, 11, 12, 15, 16]. Therefore, our goal is to establish a framework that learns a uni-
fied skill representation, capturing both semantic and motion dynamics, while remaining lightweight
enough for practical robotic deployment.

In this paper, we propose Unified Skill Representation (USR), a novel framework that operates
via a decoupled, two-stage training pipeline. In the first stage, USR pre-trains a unified skill rep-
resentation from large-scale, diverse datasets, capturing both semantic and motion dynamics. In
the second stage, this rich representation is distilled efficiently into a lightweight policy and skill
prior, optimized specifically for the target tasks. The core of our framework is cross-modal VQ-
VAE [17, 18], which integrates two complementary pathways to learn a unified skill codebook. The
visuo-linguistic pathway captures high-level semantic intent (‘what’) by extracting generalizable vi-
sual features from a pre-trained CLIP model [19], and further fusing them with task instructions via
a cross-attention mechanism. Simultaneously, the action pathway grounds these high-level seman-
tics into low-level physical motion (‘how’), using action sequences as supervision. This forces the
model to learn a compact representation that is robust to visual distractors irrelevant to the action.
These combined pathways make our skill representations highly transferable. This unification of
‘what’ and ‘how’ yields robust skills that are both task-aware and temporally coherent. The resulting
representation is compactly distilled into a lightweight skill prior, facilitating efficient downstream
adaptation.

We validate USR on the LIBERO benchmark, evaluating both in-distribution performance and few-
shot adaptation. Our results demonstrate that USR substantially outperforms previous skill-based
methods in few-shot adaptation, particularly excelling in extreme low-data regimes (5-10 demon-
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strations). Moreover, USR achieves near expert-level performance on tasks within the training dis-
tribution. To summarize, our main contributions are:

1. We propose USR, a framework that learns a unified skill representation by integrating high-
level semantic intent and low-level motion dynamics into a single skill codebook.

2. We introduce a decoupled training pipeline that reconciles large-scale pre-training with
deployment efficiency, enabling efficient adaptation of a lightweight policy to new tasks in
a few-shot manner.

3. We demonstrate superior performance on the LIBERO benchmark, with competitive results
on the training distribution and significant outperformance in few-shot adaptation against
existing skill-based approaches.

2 Related Works

2.1 Representation Pre-training on Large-Scale Data

Recent works have explored pre-training on large-scale video datasets to improve downstream pol-
icy learning. One prominent approach is learning visual representations through self-supervised
objectives, such as time-contrastive learning [20, 21] or video-language alignment [20, 22]. How-
ever, these methods typically overlook explicit dynamic labels (i.e., robot actions, proprioceptions),
resulting in representations that are insufficiently grounded for manipulation. Although recent
work [23] contrasts visual features with proprioceptive and action data, it still relies on time-
contrastive objectives, inherently lacking meaningful temporal abstraction. Our work overcomes
both limitations by learning a skill representation that is inherently not only temporally coherent but
also explicitly grounded in motion dynamics through action-based supervision.

Another line of work involves video foundation models [24, 25, 26, 27, 28, 29], which train gen-
erative networks to predict future frames. These generated visuals guide policies either directly
as image goals [24] or indirectly through intermediate representations like object flow [28]. De-
spite capturing implicit dynamics, their high computational demands limit real-time deployment
and closed-loop control. Our method circumvents this limitation by learning compact skill repre-
sentations instead of generating high-dimensional pixels.

2.2 Skill Abstraction from Offline Data

Low-level skill abstractions Low-level methods [5, 6, 7, 8] focus exclusively on action trajecto-
ries, quantizing action sequences into discrete motion primitives. As these skills derive solely from
the agent’s behavior, they inherently lack semantic context, such as identifying relevant objects to
interact with. The absence of rich scene understanding significantly limits downstream task perfor-
mance [30, 20, 22]. In contrast, our framework explicitly enriches motion primitives with semantic
context.

High-level skill abstractions High-level methods embed rich semantic context into discrete skills
by leveraging visual and language data. One subset of approaches [9, 11, 10, 31, 32] learns inter-
pretable skills from limited, in-domain datasets. However, these methods produce representations
overly reliant on specific visual sequences, as they predict skills conditioned on past observation
histories. Consequently, the learned skills become sensitive to tiny visual details, limiting transfer-
ability to novel scenes and tasks. Recent methods [15, 16] employ vision foundation models [2, 20]
to enhance generalization. However, by defining skills based on visual change without explicit
grounding in actions or language, these representations become susceptible to visual distractors and
fail to capture meaningful temporal abstractions. Our proposed framework differs by jointly leverag-
ing task-aware visual features and action supervision, yielding skill representations robust to visual
distractors and explicitly grounded in meaningful temporal abstractions. Moreover, our approach
conditions skills on current and future visual contexts, rather than past observations alone. This de-
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sign choice reduces dependence on visual sequences specific to demonstrations, thereby enhancing
transferability.

3 Problem Setting

Our goal is to learn a policy that enables a robot to perform a wide range of tasks specified by natural
language instructions. We formulate this problem as a conditional Markov Decision Process (MDP),
denoted by the tuple

(
O,A, P,R,L, γ

)
[33]. It consists of an observation space O, an action space

A, transition dynamics P , a reward function R, a space of natural language instructions L, and a
discount factor γ. At each timestep t, the agent receives an observationOt comprising a front camera
image It, a gripper camera image Igripper

t (if available), and its proprioceptive state pt. We assume
access to a dataset ofN language-conditioned trajectories D =

{(
l(i), s

(i)
1 , a

(i)
1 , . . . , s

(i)
Ti
, a

(i)
Ti

)}N
i=1

.
Our objective is to learn a language-conditioned policy Π(at:t+H | Ot−L:t, l). Here, L denotes the
observation history length and H is the action prediction horizon.

4 Method

Our method employs a modular, two-stage pipeline that decouples large-scale skill pre-training from
small-scale downstream adaptation, as illustrated in Figure 1. Section 4.1 presents the probabilistic
framework based on the Evidence Lower Bound (ELBO), enabling our two-stage learning strategy.
Section 4.2 describes the skill pre-training phase, where a unified skill representation is learned from
diverse large-scale offline datasets. Section 4.3 outlines the downstream adaptation phase, where a
lightweight skill prior and policy are trained efficiently for target tasks. This modular approach
enables USR to distill knowledge from large datasets into a compact and sample-efficient policy
suitable for real-world deployment.

4.1 Decoupling Skill Pre-Training and Downstream Adaptation

Training a monolithic, large-scale policy Π on vast datasets produces powerful but impractical mod-
els due to their computational costs, making them unsuitable for resource-constrained robotic de-
ployment. Therefore, our approach focuses on creating a lightweight policy πθ that preserves the
benefits of large-scale pre-training.

We achieve this by decomposing the monolithic policy Π. Our goal is to optimize its log-likelihood,
log Π(at:t+H | Ot−L:t, l). We introduce a latent skill variable z to reformulate this objective in terms
of a skill-conditioned policy πθ(at:t+H | zt, Ot−L:t) and a skill prior pψ(zt | Ot−L:t, l). Following
the variational inference framework, we then introduce a skill encoder qϕ(zt | It, It+H , l). This
allows us to optimize the evidence lower bound of the log-likelihood, formulated as (see Appendix A
for the detailed derivation):

L(θ, ψ, ϕ) = − Ezt∼qϕ [log πθ(at:t+H | zt, Ot−L:t)]
+DKL(qϕ(zt | It, It+H , l) ∥ pψ(zt | Ot−L:t, l)).

(1)

To enable the lightweight prior and policy to utilize rich knowledge from large-scale data, we in-
troduce a two-stage training framework. Stage I pre-trains the skill encoder qϕ on large-scale data.
This process builds a general-purpose skill representation. In Stage II, we freeze the pre-trained
encoder. Its general knowledge is then distilled into the lightweight skill prior pψ and policy πθ as
they are trained efficiently on the target dataset. This decoupled, distillation-based approach ensures
our policy is compact yet informed by large-scale data.

4.2 Stage I: Unified Skill Pre-training

The goal of Stage I is to pre-train a unified skill representation from large-scale, diverse offline data,
jointly capturing high-level semantic intent (“what to do”) and low-level motion dynamics (“how to
do it”). To achieve this, we employ a cross-modal VQ-VAE with a discrete skill codebook contain-
ing reusable skill primitives. This codebook is trained using information from two complementary
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pathways: a visuo-linguistic pathway for semantic understanding and an action pathway for mo-
tion dynamics. We alternately optimize these two pathways to ensure a balanced and robust skill
representation.

The visuo-linguistic pathway provides semantic context through our skill encoder qϕ, defined as
qϕ(·) = Etrans(Etask(·)). First, the task-aware encoder Etask generates task-aware visual features
((fvl)t, (fvl)t+H) from the current image It, the future image It+H , and language instruction l.
Inspired by recent works [34, 35], we fuse patch-level visual tokens from a pre-trained CLIP ViT
with the language instruction via a temperature-scaled cross-attention mechanism:

fvl = softmax
(
f̂l f̂

⊤
v

τ

)
(f̂v + PE), (2)

where f̂v and f̂l are the normalized visual and language features, τ is a learnable temperature,
and PE denotes positional embeddings. This allows the model to selectively attend to instruction-
relevant visual regions. Then, the transformer encoder Etrans captures temporal relationships, yield-
ing fenc,vl = Etrans((fvl)t, (fvl)t+H). In parallel, the action pathway encoderEact directly processes
action trajectories, producing dynamic features fenc, act = Eact(at:t+H). Each pathway extracts only
task-relevant information, which is then quantized into a discrete codebook. The continuous feature
vector fenc from either pathway (i.e., fenc,vl or fenc, act) is then quantized to the nearest vector ck in
the codebook, C = {ck}Kk=1, to obtain the discrete skill zt:

zt = argmin
k∈{1,...,K}

∥∥fenc − ck
∥∥2
2
. (3)

The framework is optimized via a single supervisory signal, which is action reconstruction. An
action decoder Dact reconstructs action sequences from the skill zt and current task-aware visual
feature (fvl)t: ât:t+H = Dact(zt, (fvl)t). Unlike prior work that reconstructs high-dimensional
images [36, 37], our framework uses the low-dimensional action sequence as a supervisory signal.
This compels the model to discard visual information irrelevant to the action, thus enhancing its
robustness to distractors. To ensure training stability, we mitigate gradient collapse using NSVQ [38]
and prevent codebook collapse using a codebook replacement technique [38, 39, 40]. The pre-
training objective is therefore a total reconstruction loss over both pathways:

Lpretrain(ϕ) = ∥at:t+H − âvl∥22︸ ︷︷ ︸
visuo-linguistic pathway

+ ∥at:t+H − âact∥22︸ ︷︷ ︸
action pathway

, (4)

where at:t+H is the ground-truth action sequence, and âvl and âact are the reconstructions from the
two pathways.

4.3 Stage II: Downstream Adaptation

In Stage II, we distill the rich knowledge encoded in the pre-trained skill encoder qϕ into two
lightweight components: a skill prior pψ and a skill-conditioned policy πθ, both designed for effi-
cient deployment. Unlike Stage I, which leverages future image to learn predictive representations,
Stage II uses only past observations, as future inputs are unavailable during execution. Both pψ and
πθ are trained on a smaller, in-domain dataset and implemented as small Transformer models that
process multimodal input stream consisting of camera features and proprioception. The policy head
follows BAKU [41] and predicts a continuous action distribution modeled as an isotropic Gaussian.

Ldownstream(θ, ψ;ϕ) = Ezqt∼qϕ
[
− log pψ(z

q
t | Ot−L:t, l)

]︸ ︷︷ ︸
Prior Distillation Loss

+ α Ezt∼pψ
[
− log πθ(at:t+H | sg(zt), Ot−L:t)

]
︸ ︷︷ ︸

Policy Behavior Cloning Loss

. (5)

The first term trains the prior pψ to approximate the output of the frozen skill encoder, where zqt ∼
qϕ(It, It+H , l) serves as a pseudo-label. The second term trains the policy πθ to imitate expert
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Figure 2: In-distribution performance. Average success rate on the (a) LIBERO-90 and (b)
LIBERO-LONG benchmarks. Results are averaged over 5 runs.

actions, conditioned on sampled skills. For stable training, the stop-gradient operator sg isolates
the prior from the policy’s learning signal, ensuring it is guided solely by the stable output of the
pre-trained skill encoder.

5 Experiments

We evaluate USR along two key axes: (1) In-Distribution Performance on the training data, and
(2) Few-Shot Adaptation Performance to new tasks with limited demonstrations.

5.1 Experimental Setup

Benchmark. We evaluate our method on the LIBERO benchmark. LIBERO-90 and LIBERO-
LONG are used for skill pre-training. For few-shot adaptation, we evaluate on LIBERO-OBJECT,
LIBERO-SPATIAL, and LIBERO-GOAL, each introducing novel objects, spatial configurations, or
goals.

Baselines. We compare USR with three representative baselines and a key variant of our own
model. We evaluate against Diffusion Policy [42], a non-hierarchical imitation learning method that
directly maps observations to action sequences; LISA [9], a high-level skill abstraction method that
jointly learns semantic skills and a policy; and QueST [6], a low-level skill abstraction method that
learns motion primitives from action trajectories. Additionally, we introduce USR (No Skill), a
variant where the policy is conditioned directly on the language instruction instead of our learned
skills. This allows us to isolate the contribution of the unified skill representation itself.

Evaluation Protocol. For all experiments, we evaluate each method by running it 5 times with
different random seeds. We report the average success rate across these runs.

5.2 In-Distribution Performance

We first evaluate the performance on the pre-training distributions (LIBERO-90 and LIBERO-
LONG) to assess the fundamental quality of our learned skills. As shown in Figure 2, USR
achieves the highest success rate on LIBERO-90, outperforming all baselines. On the more complex
LIBERO-LONG suite, USR achieves strong performance, significantly surpassing both Diffusion
Policy and LISA.

Due to its end-to-end framework with joint training, LISA exhibits significant instability when ap-
plied to large and diverse datasets, resulting in complete failure (0% success rate) and issues such as
codebook collapse. This result provides strong empirical evidence for our core motivation: decou-
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Table 1: Few-shot adaptation performance. We report the average success rate over 5 evaluation
runs on the three LIBERO benchmarks, training the downstream policy and prior on a varying
number of demonstrations (50, 10, and 5). Bold indicates the best performance in each column.

Method
LIBERO-OBJECT

(# demos)
LIBERO-SPATIAL

(# demos)
LIBERO-GOAL

(# demos)

50 10 5 50 10 5 50 10 5

Diffusion Policy [42] 0.92 0.76 0.54 0.78 0.36 0.34 0.72 0.44 0.24
QueST [6] 0.90 0.60 0.38 0.78 0.50 0.10 0.80 0.54 0.12
LISA [9] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
USR (No Skill) 0.94 0.50 0.16 0.74 0.34 0.14 0.84 0.28 0.18
USR (Ours) 0.92 0.78 0.52 0.84 0.64 0.52 0.90 0.62 0.54

pling skill pre-training from downstream adaptation is essential for robust training with large-scale
data.

5.3 Few-Shot Adaptation Performance

We now test the central claim of our work that USR’s unified skills enable highly efficient adap-
tation. In a few-shot adaptation setting, we freeze the pre-trained skill encoder qϕ and train only
the lightweight prior pψ and policy πθ on a limited number of demonstrations (5, 10, or 50). For a
fair comparison, the other skill-based baselines (QueST and LISA) follow the same protocol. Their
pre-trained skill modules are frozen, and only the downstream components are trained on the tar-
get data. The non-hierarchical Diffusion Policy, in contrast, is trained from scratch on the few-shot
demonstrations.

As shown in Table 1, USR demonstrates markedly superior performance over all baselines across
the three benchmarks. This advantage is most pronounced in the extreme low-data regimes (5 and 10
demonstrations), which underscores the high transferability of our unified skills. Diffusion Policy
performs competently on the simpler tasks (LIBERO-OBJECT). However, its performance degrades
on complex tasks that require both high-level semantic understanding and coherent low-level motion
dynamics, revealing the limitations of an unstructured, end-to-end approach. QueST exhibits a sharp
performance decline as the number of demonstrations decreases. While its motion primitives are
effective with sufficient adaptation data, they lack the semantic grounding necessary to infer the
correct high-level behavior in a novel visual context from few examples. LISA fails on all transfer
tasks. Its retrospective approach of defining skills from past observations causes it to overfit to the
training domain’s specific visual details. Furthermore, its joint training paradigm is ill-suited for the
large-scale pre-training necessary for generalization. Finally, our variant, USR (No Skill) provides
direct evidence that the unified skill representation itself is the primary driver of this high sample
efficiency.

5.4 Latent Skill Analysis

We conduct a qualitative analysis to understand the properties of the learned latent skills. As shown
in Figure 3, the learned skills are fundamentally task-centric and robust to visual distractors. For
instance, a skill codebook (e.g., ‘Place’) consistently represents trajectories with the same underlying
semantic intent and motion dynamics, even amidst visual variations such as different backgrounds
or object layouts. Furthermore, the t-SNE visualization in Figure 4 demonstrates that the learned
skill space is well-structured, where skills with similar semantics and motion characteristics form
distinct clusters.

6 Conclusion

In this work, we introduce USR that learns a unified skill representation to reconcile the need for
large-scale pre-training with the demands of efficient, real-world policy deployment. Our approach
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Figure 3: Visualizations of skills. Each row shows different trajectories that map to the same skill
codebook, demonstrating that our skills are task-centric and robust to visual distractors.
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Figure 4: t-SNE visualization of unified skill embedding. Our learned skills form distinct clusters
based on semantic-motion similarity, demonstrating their reusability across tasks. Each point is a
skill embedding, with opacity denoting time (more transparent is earlier).

unifies high-level semantic intent (‘what to do’) and low-level motion dynamics (‘how to do it’) via
a cross-modal VQ-VAE with a shared skill codebook. Our decoupled, two-stage pipeline enables
skill pre-training on large datasets by separating it from the few-shot adaptation phase of a compact,
downstream policy. Experiments on the LIBERO benchmark demonstrate that our method achieves
strong in-distribution performance and significantly outperforms baselines in few-shot adaptation
scenarios. Despite these promising results, a key limitation lies in our framework’s reliance on
action-labeled trajectories. A crucial direction for future work is to extend our method to learn
from the vast and diverse corpora of action-free videos, such as human demonstrations available on-
line. Addressing this limitation would unlock the potential of web-scale data for building generalist
robotic agents.
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A Derivation of the Evidence Lower Bound

This appendix provides a comprehensive derivation of the Evidence Lower Bound (ELBO) pre-
sented in Eq. 1. Our framework decomposes this objective into three distinct modules: a skill
encoder qϕ, a skill prior pψ , and a skill-conditioned policy πθ. For notational simplicity, we denote
the Ot−L:t as O and the action sequence at:t+H as a.

The derivation begins with the log-likelihood policy Π(a | O, l):

log Π(a | O, l)

We introduce the latent skill variable z by marginalizing over its distribution. This allows us to
conceptually decompose the monolithic policy Π into a conditional policy πθ and a skill prior p.

= log
∑
z

Π(a, z | O, l) = log
∑
z

πθ(a | z,O, l)p(z | O, l)

Next, we introduce a variational distribution qϕ(z | It, It+H , l) as an approximation to the true
posterior p(z | a,O, l). Multiplying and dividing by qϕ within the summation yields:

= log
∑
z

qϕ(z | It, It+H , l)
πθ(a | z,O, l)p(z | O, l)

qϕ(z | It, It+H , l)

This is equivalent to the logarithm of an expectation with respect to qϕ:

= logEz∼qϕ
[
πθ(a | z,O, l)p(z | O, l)

qϕ(z | It, It+H , l)

]
By applying Jensen’s inequality, we establish a lower bound on the log-likelihood:

≥ Ez∼qϕ
[
log

πθ(a | z,O, l)p(z | O, l)
qϕ(z | It, It+H , l)

]
Expanding the logarithm gives:

= Ez∼qϕ
[
log πθ(a | z,O, l) + log p(z | O, l)− log qϕ(z | It, It+H , l)

]
Herein, we posit a key modeling assumption: the latent skill z serves as a sufficient statistic for the
language instruction l with respect to the policy’s action generation. This implies the conditional
independence πθ(a | z,O, l) = πθ(a | z,O). Applying this assumption, we obtain:

= Ez∼qϕ [log πθ(a | z,O)] + Ez∼qϕ [log p(z | O, l)− log qϕ(z | It, It+H , l)]

Finally, we substitute the true prior p(z | O, l) with a learnable skill prior pψ(z | O, l). The second
expectation term can then be expressed as the negative Kullback-Leibler (KL) divergence, which
yields the final ELBO objective:

L(θ, ϕ, ψ) = Ez∼qϕ(z|It,It+H ,l)
[
log πθ(a|z,O)

]
−DKL

(
qϕ(z|It, It+H , l)

∣∣pψ(z|O, l))
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